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Abstract: This paper introduces a groundbreaking framework for computational neuroscience, uniting Descriptive, Mechanistic, and Interpretive 

models. Tailored to unravel the complexities of the brain, our framework categorizes and establishes a dynamic platform for real-time comparative 

analysis, offering insights into individual model strengths and weaknesses. Descriptive models (Neural Firing Rate, Population Rate, Neural Field) 

quantitatively capture neural phenomena without an explicit focus on underlying mechanisms. Mechanistic models (Hodgkin-Huxley, Synaptic, 

Biophysical) delve into intricate biological processes, simulating neural activity with detailed mechanisms. Interpretive models (Integrate-and-Fire, 

Generalized Linear) prioritize conceptual understanding, offering insights into the principles governing neural processes. 

 

Index Terms - computational neuroscience, descriptive model, framework,  interpretive model, mechanistic model 

 

I. INTRODUCTION  

Computational Neuroscience has made significant strides in recent 

years, utilizing the power of computation to unravel the dynamic 

mechanisms of the brain. In this work, we present a comprehensive 

framework for the same, encompassing descriptive, mechanistic, 

and interpretive modeling types. Our framework is designed to 

bridge the gap between theoretical understanding and empirical 

data, providing a unified approach to simulating brain functions. 

 

A literature revealed a rich tapestry of computational models 

employed to dissect various aspects of the neuronal processes. 

However, a recurrent observation was the lack of a comprehensive 

framework that systematically categorized and emphasized each 

modeling type based on their criteria. Existing studies often applied 

computational models collectively, without explicitly highlighting 

the distinct characteristics of each type and their specific 

contributions to the field. 

In unveiling this framework, we aim to empower researchers and 

practitioners in the field to navigate the intricate landscape with 

clarity and purpose. 

 

Computational neuroscience utilizes mathematical models, 

computer science techniques, theoretical analysis, and abstract 

representations of the brain to explore the principles governing the 

development, structure, physiology, and cognitive functions of 

the nervous system.  

 

Current trends in computational neuroscience include challenges 

in understanding the brain, highlighting the complexity of higher 

brain functions and the limitations of studying individual 

neurons. The emergence of properties at higher levels of 

organization is emphasized, necessitating advances in techniques 

for probing distributed processing in the brain. It also mentions 

ongoing developments in experimental methods, including 

simultaneous recording from multiple single units, optical 

recording of cortical organization, and large-scale measurements 

of brain structure and activity. Despite the advancements, these 

techniques have limitations in spatial or temporal resolution, 

prompting the need for new approaches to understanding 

distributed processing. 

 

 

 

The importance of computational modeling in addressing 

conceptual issues related to information processing in the brain is 

emphasized. The advantages of brain models are outlined, 

including their ability to make complex systems more accessible, 

predict experimental outcomes, and simulate experiments that 

may be challenging in living tissue. A literature delves into the 
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question of what kind of computer the brain is, drawing a 

distinction between mechanical and computational explanations. 

Unlike digital computers, the brain is described as a collection of 

specialized, efficient systems with constrained flexibility due to its 

evolutionary nature. 

 

Researchers in neuroscience have turned to computational 

modeling as an essential tool in their toolkit. By creating and 

simulating models that mimic the neural processes observed in the 

brain, researchers can gain insights into the algorithms underlying 

brain function. Computational neuroscience models serve as a 

bridge between experimental observations and theoretical 

understanding, allowing researchers to explore hypotheses, make 

predictions, and test the consequences of complex, nonlinear 

systems. These models are particularly valuable for investigating 

emergent properties at higher levels of brain organization, 

providing a complementary approach to experimental techniques in 

unraveling the mysteries of the mind. 

 

In the study of complex systems like the brain, it is argued that 

neuroscience should begin by examining the specific computations 

a system aims to accomplish. The emphasis is placed on studying 

particular computations rather than focusing solely on theories of 

the system. Various approaches and methods for modeling can be 

employed in this context. Descriptive models aim to characterize 

observed phenomena without specifying underlying mechanisms, 

providing a comprehensive portrayal. In contrast, mechanistic 

models delve into the detailed processes and interactions that 

generate the observed outcomes, offering a deeper understanding of 

the underlying mechanisms at play. 

 

II. APPROACH  

The objective of this research is to develop an integrated and 

versatile computational framework that combines descriptive, 

mechanistic, and interpretive models in the field of neuroscience. 

The aim is to investigate the interplay between these diverse model 

types, providing a holistic understanding of neural processes and 

their implications. Additionally, the research seeks to analyze the 

performance and validity of the models, offering insights into the 

emergent properties of complex neural systems. Ultimately, this 

study aims to contribute to the advancement of computational 

neuroscience methodologies and deepen our understanding of the 

brain's functionality. Several studies have focused on descriptive 

models, offering insights into observed neural phenomena without 

delving into the underlying mechanisms. A study developed a 

descriptive model elucidating the temporal dynamics of membrane 

potential in specific neural circuits. Conversely, mechanistic 

models aim to untangle the intricate processes and interactions 

with neural systems and processes. A researcher pioneered a 

mechanistic model investigating the input-output transformations 

of neurons, offering a detailed understanding of the underlying 

psychological mechanisms. Interpretive models, emphasizing the 

broader implications of neural processes, have also been 

prevalent in a literature employing an interpretive model to 

analyze the cognitive implications of observed neural patterns, 

linking neural activity to higher-order cognitive functions. 

 

In light of the fragmented nature of existing literature, our 

research seeks to address the gap between collection and problem 

by proposing a comprehensive framework that harmonizes 

descriptive, mechanistic, and interpretive models.  Through 

systematic analysis and validation, our research endeavors to 

pave the way for a more cohesive and insightful exploration of 

computational neuroscience. 

 

For creating this framework the aforementioned models: 

Descriptive, Mechanistic, and Interpretive are implemented and 

evaluated based on: 

● Speed of information processing: The rate of information 

processing in biological neural systems is comparatively 

faster than digital processing, the nervous system 

overwhelmingly prefers parallel computation over serial 

ones in time-critical applications. 

● Robustness: A model is robust if it continues to produce the 

same set of outputs under variations of inputs or new 

parameters are introduced, nonetheless the model should be 

steady and robust no matter what. 

● Gain control: The principle behind the response of a nervous 

system should stay within certain bounds even when the 

inputs from the environment change drastically. The 

producing outputs should follow the constraints provided 

while building the model. 

● Linearity vs nonlinearity: A linear system is one type of 

modeling that follows a specific unit of measure, the set of 

inputs will be considered at once. Linear systems are easier 

to analyze mathematically and are a persuasive assumption 

in many models. Whereas nonlinear models are generally 

assumed to be parametric and are described in a nonlinear 

equation. 

To commence the process of benchmarking and creating the 

framework, we systematically employed a variety of models and 

modeling types representing different paradigms within 

computational neuroscience. Within Descriptive models, we 

utilized mathematical and computational representations of 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 

 

    5047 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

models including the Linear-Nonlinear-Poisson model (LNP) and 

Rectified Linear unit model (ReLU), which allowed us to explore 

the relationship between inputs and outputs without modeling 

detailed biophysical processes. Population rate models and Neural 

field models were also used, providing insights into spatiotemporal 

dynamics within the process. In parallel, we integrated Mechanistic 

models such as the Hodgkin-Huxley model, Synaptic models such 

as the Tsodyks-Markram model, and Biophysical models, 

incorporating detailed properties such as dendritic compartments 

and ion channels. To provide a comprehensive and conceptual 

understanding, Interpretive models were also included. Models 

such as the Integrate-and_fire models, representing neurons as 

passive electrical circuits, and generalized linear models (GLMs), 

combine linear filters with nonlinear transformations. Our 

framework also considered other specialized models and modeling 

paradigms, including the Kuramoto model, point process models, 

hidden Markov models, FitzHugh-Nagumo oscillator, 

neuromuscular models, cellular automata models, spiking neural 

network models, reaction-diffusion models, place cell models, 

population vector models, Bayesian models, and information 

theory models. By integrating these diverse models, our approach 

aimed to create a robust and versatile framework for computational 

neuroscience, facilitating a more holistic exploration of neural 

processes. 

 

III. METHODOLOGY 

The methodology adopted for this research focuses on creating a 

versatile framework for simulating diverse brain behaviors. The 

integration of multiple computational models is a key feature, 

ensuring a comprehensive representation of neural dynamics. A 

pivotal aspect involves the development and implementation of 

algorithms designed to convert raw spikes into excitatory and 

inhibitory signals, bridging the gap between raw data and 

meaningful neural representations. The parameterization and 

calibration process fine-tuned model parameters to align with 

experimental observations, enhancing simulation fidelity. 

Sensitivity analysis further explores the impact of input parameter 

variations on model outputs, providing insights into critical 

parameters influencing simulated neural activity. This 

methodology collectively enables researchers to gain valuable 

insights into different computational methods for understanding 

brain structure and function.  

 

Descriptive Models: 

Descriptive models are mathematical and computational 

representations that aim to describe and replicate observed neural 

phenomena or data without focusing on underlying mechanisms. 

These models may not provide insights into the detailed 

biophysical processes occurring within neurons or neural 

networks. Instead, they are used to capture and replicate specific 

features of neural activity or behavior. 

 

Neural Firing Rate Models: Utilizing the average firing rate of 

neuron populations offering a high-level description of neural 

activity. 

 

Population Rate Models: Focusing on the aggregate firing rate of 

neuronal populations capturing the overall  

activity patterns. 

 
 

Neural Field Models: A population-level approach concentrating 

on the non-linear dynamics of neurons. 

 
 

Mechanistic Models: 

Mechanistic models are essential for understanding the 

fundamental biological processes underlying neural function. 

They are used to simulate and predict neural activity and explore 

how neural mechanisms can lead to others. Unlike descriptive 

models, they delve into the details of how neurons are 

functioning. 

 

Hodgkin-Huxley Models: Describing the biophysical 

mechanisms of action potential generation in neurons by 

modeling the behavior of voltage-gated ion channels. 

 

 

 

Synaptic Models: Entailing a mathematical description of the 

transformation of a presynaptic action potential into a 

postsynaptic response, such as an ionic current.  

    

STDP (Spike-Timing Dependent Plasticity): 

 
 

Tsodyks-Markram Model: 
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Biophysical Models: Simulating the interactions between neurons 

with detailed biophysical properties such as dendritic compartments 

and multiple ion channels. 

 

IzhikevichModel:   

 

FitzHugh-Nagumo Model: 

 

 

 

Interpretive Models: 

Interpretive models focus on explaining or interpreting specific 

neural phenomena. These models are designed and used to provide 

insights into the underlying mechanisms or principles governing 

neural processes, providing the relationships between neural 

activity and external stimuli. Though they provide insights, unlike 

mechanistic models they may not necessarily aim to capture all the 

intricate details of neural biology, they just prioritize conceptual 

understanding. 

 

Integrate-and-Fire Models: Operating on the principle of 

accumulating input until a threshold is reached, providing a 

simplified yet powerful interpretation of neuron behavior. 

 
 

Generalized Linear Models: Encompassing various subtypes such 

as temporal filtering, Bernoulli, and logistic regression, these 

models offer a flexible framework for capturing relationships 

between stimuli and neural responses. 

 

Temporal Filtering 

 
 

Bernoulli GLM: 

 

 

Logistic Regression: 

 

For the diverse set of neural models used in the framework, 

optimal parameters were selected through a combination of 

literature reviews.  

The goal was to ensure that each model accurately captured 

essential characteristics observed in experimental data. 

 

Parameters such as transfer functions, connectivity kernels, 

activation functions, and external inputs were carefully chosen 

for descriptive and mechanistic models. These decisions were 

informed by the desire to replicate realistic firing rate patterns, 

spatial and temporal dynamics, and synaptic plasticity observed 

in neural systems. The models were evaluated by running them 

against randomly sampled arrays simulating various input 

conditions, to ensure the adaptability and robustness of each 

model across diverse neural scenarios. 

 

IV. LITERATURE SURVEY 

In crafting a comprehensive computational neuroscience 

framework, a survey of foundational literature reveals key 

insights across various modeling paradigms. The integration of 

Python into the NEURON [1] simulation program signifies a 

significant leap in computational neuroscience, empowering 

researchers with the flexibility and extensive analysis tools of 

Python alongside NEURON’s traditional Hoc interpreter. This 

collaboration not only grants access to established engineering 

and scientific tools but also propels ongoing NEURON software 

development. Existing models seamlessly transition into Python, 

exemplified by the utilization of Python's XML module in 

NEURON's Import 3D and CellBuild tools for reading MorphML 

and NeuroML model specifications. This seamless 

interoperability enhances NEURON's adaptability, providing a 

modern and robust programming environment for intricate neural 

simulations. Simultaneously, The Virtual Brain (TVB) [2] 

emerges as a neuroinformatics platform, featuring a simulation 

environment supporting model-based inference of 

neurophysiological mechanisms. TVB's Python core, data 

management framework, and support for personalized brain 

configurations make it a versatile tool for macroscopic 

neuroimaging signal generation. As neuroscience experiences 

rapid experimental growth, a pragmatic perspective emphasizing 

the distinct roles of descriptive, mechanistic, and normative 

models guides neuroscientific practice [3], offering 

methodological insights for advancing modeling approaches. The 

collaborative potential of Python in NEURON and TVB's 

comprehensive simulation capabilities collectively contribute to 

the evolving landscape of sophisticated neuroscientific 

methodologies. 
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V.  RESULTS 

Incorporating the models into the framework facilitated the 

seamless exploration of neural phenomena at various scales, 

emphasizing the versatility and adaptability of our approach. The 

analyses were not only informative but also visually compelling, 

with the framework’s visualization tools allowing for a nuanced 

interpretation of simulated neural activities. 

 

This research opens avenues for further research and application, 

demonstrating the framework’s potential as a valuable tool for 

researchers and practitioners in the field of computational 

neuroscience. 

 

TABLE 1 

Parameters and variables  

 

From the above table, diverse neural response patterns were 

obtained across the implemented models, with all other variables 

chosen in accordance with their respective equations. 

 

VI. CONCLUSION 

We began by recognizing the challenges inherent in modeling 

neural phenomena across scales and proposed a unified framework 

to encompass various modeling approaches. The significance of our 

finding lies in the framework’s ability to seamlessly unite 

Descriptive, Mechanistic, and Interpretive models showcasing the 

underlying properties of neural systems. The simulations yielded a 

rich variety of outputs, including the adaptability and versatility of 

our approach. Each model is chosen for its appropriateness to 

specific aspects of neural dynamics.  

 

Our framework addresses the challenge of unifying disparate 

modeling approaches, providing a cohesive environment for 

researchers to investigate and infer neural phenomena.  

The contributions of our work extend beyond individual models 

offering insights for future investigations and advancements in 

computational neuroscience methodologies. In summary, our 

research marks a significant step towards advancing and fostering 

a deeper comprehension of the facets of neural dynamics. 
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