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Abstract— This paper investigates the nonlinear model predictive control problem for stabilization of unstable vehicle dynamics. 

Model predictive control (MPC) method is a kind of optimal feedback control method in which the control performance over a finite 

future is optimized. The contraction mapping algorithm is used for solving the nonlinear model predictive control problem within a 

short sampling period. A nonlinear tire model is employed to describe the realistic behavior of vehicle motions. The objective of this 

paper is to propose a nonlinear model predictive control method with a fast numerical solution algorithm called contraction mapping 

method for designing an automatic vehicle control system. The effectiveness of the proposed method is verified by numerical 

simulation. 

 
Index Terms— Vehicle control, Nonlinear control, Optimal control, Model predictive control. 

 

I. INTRODUCTION 

  In recent years, various control problems of vehicle 

dynamics such as collision avoidance [1], rollover prevention 

[2], wheel slip control [3], driver assistance control [4] have 

been studied. In particular, model predictive control (MPC) 

method is widely used to solve various vehicle control 

problems. In [5], a linear MPC has been proposed for control of 

steering and braking in autonomous vehicle navigation. In [6], 

MPC control method has been proposed to solve the problem 

with brake torque constraints of electronic mechanical brake 

mechanism for a vehicle yaw stability. Furthermore, MPC 

method based on an integrated control algorithm for vehicle in 

active steering and dynamics yaw control has been proposed in 

[7].  

MPC is known as a well-established control method in which 

the control input is obtained by solving an open-loop optimal 

control problem with finite evaluation interval. This 

optimization procedure is repeated at each sampling instant. 

Thus, MPC is a type of optimal feedback control in which the 

control performance over a finite future is optimized and its 

performance index has a moving initial time and a moving 

terminal time. MPC is known as one of the most successful 

control methods because it enables control performance to be 

optimized while taking constraints on state and control variables 

into consideration [8]-[12]. 

 

Model predictive control problems of vehicle nonlinear 

dynamics are known to be nonlinear model predictive control 

(NMPC) problems that need to be solved by numerical 

algorithm of nonlinear optimal control. Thus, the 

implementation of NMPC, in which the control problem is 

solved on-line, poses significant challenges in terms of 

computational load. This study examines the stabilization 

problem of unstable vehicle dynamics caused by a collision 

accident.  

 

In [13], the NMPC problem has been studied for stabilization 

of vehicle nonlinear dynamics to avoid the second accident after 

the first collision accident. Then, a fast numerical solution 

method has been developed in [13] based on C/GMRES 

algorithm [14] to solve the NMPC problem for stabilization of 

unstable vehicle dynamics caused by collision accident.  

Recently, numerical algorithm called contraction mapping 

method has been proposed in [15]. It has been shown that this 

algorithm is faster than the C/GMRES algorithm [14] from the 

computational point of view. The NMPC problem for 

stabilization of unstable vehicle dynamics needs to be solved 

within a short sampling period.  

The objective of this paper is to propose a nonlinear model 

predictive control method with a fast numerical solution 

algorithm called contraction mapping method for designing an 

automatic stabilization control system of unstable vehicle 

dynamics. The effectiveness of the proposed method is verified 

by numerical simulation. 

II.  VEHICLE SYSTEM MODEL 

 

In this section, a vehicle system model under the following 

assumptions is introduced. First, it is assumed that the 

difference between the vertical loads of the left and right wheels 

is negligible. Second, it is assumed that rolling and pitching 

motions are negligible. Finally, it is assumed that the rear tires 

are not steered. Under those assumptions, the cornering forces 

of the left and right wheels are equal each other. Thus, a 

four-wheeled vehicle model can be regarded as a two-wheeled 

vehicle model. In this study, a two-wheeled vehicle model is 

considered as shown in Fig. 1, which is equivalent to a 

four-wheeled vehicle model. The system parameters used in this 

model are listed in Table 1. 
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Figure 1:  Two-wheeled vehicle model equivalent to four-wheeled vehicle 

model. 

 
  Table 1 System parameters 

 

  Notation 

 vehicle mass 

 gravitational acceleration 

 frictional coefficient 

 vehicle moment of inertia around z axis 

 center of mass distance to the front axle 

 center of mass distance to the rear axle 

 aerodynamic drag coefficient 

 effective aerodynamic drag area 

 driving and braking force 

 tire lateral force 

 vehicle yaw rate 

 longitudinal velocity in vehicle coordinate 

 lateral velocity in vehicle coordinate 

 steering angle of front wheel 

 side slip angle 

 vehicle angle 

 vehicle lateral displacement 

 

 

The angle between the directions of movement and rotation of 

the tires is called the slip angle of the tires. The slip angles of the 

front and rear tires  and  are given by  

,  

.  

In the range where the slip angle is sufficiently small, the lateral 

force increases in portion to the slip angle. However, the lateral 

force will saturate and decrease from the maximum value when 

the slip angle increases beyond a certain value. In other words, 

the lateral force increases approximately linearly for the first 

few degrees of slip angle, and then increases non-linearly to a 

maximum before beginning to decrease. In order to take more 

realistic tire model into account, we introduce a nonlinear tire 

model called Magic Formula [16] as follows: 

 

,  

  

 

Magic Formula is an empirical formula obtained from 

experimental data. It is difficult to interpret the formula 

physically. However, it is more accurate than linear tire model. 

 is a constant determined to represent the experimental data 

[16].  

 

For notational simplicity, we introduce the state and input 

vectors as follows:  

 

,  

.  

 

Using these notations, it is shown in [13] that the system model 

of vehicle dynamics can be described by the following state 

equation:  

                              (1) 

. 

Hereafter, we consider equation (1) as the system model of 

two-wheeled vehicle motion with nonlinear tire dynamics.  

 

III. NONLINEAR MODEL PREDICTIVE CONTROL 

 

In this section, the nonlinear model predictive control problem 

of system model (1) is considered. First, the optimal control 

problem of nonlinear vehicle dynamics is considered. The 

control input at each time  is determined so as to minimize the 

following performance index:  

                                                                          (2) 

where  is the evaluation interval of the performance index, and 

 are weighting coefficients. The optimization problem of 

(2) subject to equality constraint (1) can be reduced to 

minimizing the following performance index  introduced by 

using the costate  associated with the equality constraint.  
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Let the Hamiltonian  be defined by  

 

 

 
 

Also, let the terminal cost function  be defined by  

 

. 

Then, the performance index   is rewritten by  

 

 
 

Next, we consider the variation in   as follows: 

 

It is worth noting that we apply the following integration by 

parts to the computation on . 

 

 
 

In the above, note that we take  because  is fixed 

at . Taking the above integration by parts into account, we 

obtain the variation in  as 

 

 

On the basis of the variational principle, we obtain the necessary 

conditions for a stationary value of   over the horizon 

 as follows.  

 

       (3) 

                (4) 

             (5) 

                               (6) 

Conditions (3)-(6) are called the stationary conditions or 

Euler-Lagrange equations that must be satisfied for the 

performance index (2) to be minimized. A well-known 

difficulty of the nonlinear optimal control is that it results in a 

nonlinear two-point boundary-value problem that cannot be 

solved analytically in general. Then, a fast algorithm, called the 

contraction mapping method, for numerically solving stationary 

conditions has been proposed in [15]. A brief description of the 

contraction mapping method applied to this problem is 

presented in the subsequent discussion.  

  To solve the stationary conditions in (3)-(6) using numerical 

algorithm, we must discretize equations (3)-(6) into 

discrete-time equations. Let the time  over the 

prediction horizon be divided into  steps and  denote the 

discretized temporal variable. As a result of the discretization 

approximation, we obtain the discretized stationary conditions 

over the horizon  as follows: 

 

                              (7) 

       (8) 

                                               (9) 

                        (10) 

 

Note that  is identical to the present known state . The 

time-evolutionary equations of  and  are discretized into 

forward difference equation in (7) and backward difference 

equation in (8), respectively. Let the optimization parameters 

 be unified into a vector denoted by  

 

. 

In the following, we provide the procedure for computing  

 to satisfy stationary conditions (7)-(10). For the present 

state  and a given initial solution ,  for 

 is calculated recursively from  to  by 

using (7). Next, the terminal costate  is determined from 

the terminal state  by using (9). Consequently,  for 

 is calculated recursively from  to  by 

using (8). Because   and    are determined by  and  

through equations (7)-(9), equation (10) for  can be 

regarded as a single equation.  

 

(11) 

 

Because  and   for  are uniquely 

determined through equations (7)-(9) for the given  and 

, it is worth noting that  and   depend on  and 

. Hence, it is reasonable to consider the arguments of  as 

 and . 

For a given  and ,  is not necessarily equal to zero, 

so  is used to evaluate the optimality performance. If 

 is satisfied for the given  and , then the 

stationary conditions are satisfied. Several algorithms have been 

developed such that  can be decreased by suitably updating 

 as discussed below. 

 A conventional way to update  is to replace  with 

, known as the steepest descent method, where  is 

the steepest descent direction and  is the step length satisfying 

the Armijo condition. For Newton’s method,  is given by the 

Hessian instead of the gradient. However, these methods are 

computationally expensive, and it was shown that the 

contraction mapping method is much faster than these methods.  

 Note that  can be described as  

        (12) 
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Then, the updating low of  based on the contraction 

mapping method is given by 

 

        (13) 

 

More detailed information about the implementation of 

contraction mapping method is provided in [15]. 

 

IV. NUMERICAL SIMULATIONS 

 

In this section, an illustrative example is provided to verify the 

effectiveness of the proposed method. We consider the situation 

where a vehicle become unstable motion after the collision 

accident. Here, we examine the effectiveness of the proposed 

method to stabilize such an unstable vehicle motion. In this 

simulation, we set the weighting coefficients and the initial state 

as follows: 

 

   

, ,  

The other parameters employed in the numerical simulations are 

as follows:  

, , , , , 

, , . 

In the following, we provide the simulation results to verify the 

effectiveness of the proposed method. Figures 2-6 show the time 

responses of state variables using nonlinear model predictive 

control based on the C/GMRES method and the contraction 

mapping (CM) method. It is seen that not only lateral velocity 

and vehicle yaw rate but also lateral displacement and vehicle 

angle converge to zero and the unstable motion of the vehicle is 

well stabilized. In other words, not only  and  but also  

and  are well stabilized to converge to zero, that means, 

unstable lateral and yaw motions of vehicle are well stabilized 

using the proposed method. Furthermore, it is seen that both 

time responses of state variables are almost similar.  

Figures 7-8 show the time responses of control inputs. It is 

seen that time histories of control inputs using the C/GMRES 

method and the CM method are similar each other. Figure 9 

shows the time response of the optimality errors. It is seen that 

the optimality error of C/GMRES method is smaller than that of 

the CM method. Although the optimality in case of CM method 

is deteriorated than C/GMRES method, the performance of 

system response is almost same in both cases.   

Simulation is performed on a laptop computer (CPU: Intel(R) 

Core(TM) i7-8550U 1.80 [GHz], Memory: 8.0 [GB], OS: 

Windows 10, Software: Matlab). The computational times per 

update (one control cycle) using the C/GMRES method and the 

CM method are listed in Table 2.  It is seen that the 

computational time of the CM method is smaller than that of the 

C/GMRES method.  

 

Table 2 

 

 Method            Maximum time        Average time 

 [ms]                        [ms] 

    

    C/GMRES            9.850                        0.705 

     CM                     0.354                        0.416 

 

 

 
Figure 2:  Time responses of  . 

 

 
Figure 3:  Time responses of  . 

 

 

 
Figure 4:  Time responses of  . 

 

 
Figure 5:  Time responses of  . 
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Figure 6:  Time responses of  . 

 

 
 

Figure 7:  Time responses of  . 

 

 
Figure 8:  Time responses of  . 

 

 
 

Figure 9:  Time responses of optimality error. 

CONCLUSION 

In this study, an automatic stabilization method is proposed 

based on nonlinear model predictive control (NMPC) for 

vehicle dynamics. In this problem, the nonlinearity of vehicle 

dynamics cannot be neglected. Hence, a nonlinear tire model 

was employed in this study to consider the realistic behavior of 

vehicle dynamics. The MPC method previously proposed for 

control of autonomous vehicle applied the C/GMRES algorithm 

for numerically solving the nonlinear model predictive control 

problem. The contraction mapping algorithm is known to be 

faster than the C/GMRES algorithm. The contraction mapping 

method is useful for solving the nonlinear model predictive 

control problem within a short sampling period. Then, the 

contraction mapping method was applied in this study to solving 

the nonlinear model predictive control problem of autonomous 

vehicle. In this study, a nonlinear model predictive control 

method with a fast numerical solution algorithm for designing 

an automatic stabilization control system was established. The 

effectiveness of the proposed method was verified by numerical 

simulations.                                            
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