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Abstract : Water quality is a crucial aspect of the health and well-being of communities and ecosystems around the world. This 

study focuses on water quality prediction for the Bharathapuzha River, which is susceptible to various sources of contamination. 

The prediction model is built using Recurrent Neural Network (RNN) variants and Temporal Fusion Transformers (TFT) approach.  

The dataset developed for building the prediction model consists of 2190 unique instances containing physicochemical and seasonal 

parameters. Water quality varies over time due to changes in natural and human factors, such as weather conditions, land use, 

pollution levels, and treatment processes. The objective is to capture the time series patterns in the data and to forecast the water 

quality index accurately. The performance result demonstrates that the TFT outperforms the RNN variants in prediction. This study 

highlights the importance of TFT in trend analysis and developing a reliable forecasting model. 
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1. INTRODUCTION 

The precise forecasting of water quality is imperative for 

developing effective management approaches and is thus a 

primary concern for water resource managers and 

policymakers in ensuring environmental sustainability and 

public health. The Bharathapuzha River is a vital water 

resource in the Indian state of Kerala but is increasingly 

threatened by pollution from various sources, including 

agricultural runoff, industrial discharges, and municipal 

waste. Predicting water quality in the river is a challenging 

task, given the complexity of the underlying processes and 

the interplay of multiple environmental and physicochemical 

factors. 

In recent years, machine learning algorithms have emerged 

as a promising approach to predicting water quality based on 

a range of factors. These algorithms have the potential to 

capture complex patterns in large datasets and improve the 

accuracy of water quality predictions. However, there is a 

need for more research on the use of advanced machine 

learning techniques, such as deep learning, in predicting 

water quality for complex river systems such as the 

Bharathapuzha River. 

In this research article, proposes a water quality prediction 

model for the Bharathapuzha River that employs Recurrent 

Neural Network (RNN) variants and Temporal Fusion 

Transformers (TFT). The model aims to capture the 

physicochemical and seasonal patterns in the time series 

dataset to forecast water quality accurately. The dataset with 

2190 unique instances that contain both physicochemical and 

seasonal parameters to build the prediction model. The use 

of RNN variants and TFT allows us to capture long-term 

temporal dependencies and improve the accuracy of the 

prediction. The study contributes to the growing body of 

research on the use of deep learning algorithms in predicting 

water quality for complex river systems. The proposed model 

has the potential to help water resource managers in 

developing effective strategies for water quality management 

and conservation. Additionally, the study highlights the 

importance of advanced machine learning techniques for 

predicting water quality in complex river systems and 

provides insights into the potential of deep learning for 

addressing water quality challenges.  

Numerous research studies have been conducted utilising a 

restricted set of physicochemical parameters to construct 

water quality, forecasting models. However, it has been 

observed that enhancing the number of physicochemical 

factors, in addition to incorporating seasonal variables, can 

effectively enhance the efficiency of water quality 

prediction. 

The grey relational method, mathematical statistics method, 

model-based approach, Bayesian approach, Genetic 

Algorithm, MLP regressor, and support vector regressor are 

computational methods used by researchers currently in the 

existing water quality prediction research.  

Umair Ahmed et al. [2] established an efficient water quality 

prediction Framework with supervised machine learning. 

This framework provides a strategy that employs four 

information boundaries, namely temperature, turbidity, pH, 
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and solids that have been entirely dispersed. The research 

was supported by data from PCRWR, which included 663 

samples from 12 distinct wellsprings in Pakistan's Rawal 

Lake. WQI was evaluated utilising a range of AI calculations 

directed by agents and also calculating relapse and 

categorization. The eight lapse calculations for WQI and 10 

classification calculations for ordering experiments into 

predetermined WQC computations had been assessed. 

Shuangyin Liu et al. [5] proposed a half-and-half 

methodology of help vector relapse with hereditary 

calculation advancement for hydroponics water quality 

prediction. This paper proposes a forecast model based on 

help vector relapse (SVR) to address the hydroponics water 

quality expectation issue. When putting together a successful 

SVR model, the SVR boundaries should be set with caution. 

This study presents a half-and-half methodology known as 

genuine worth hereditary calculation uphold vector 

regression (RGA-SVR), which looks for the best SVR 

boundaries using genuine esteemed hereditary calculations 

and then uses the best boundaries to build the SVR models. 

The methodology is used to forecast the hydroponics water 

quality data collected from Yixing’s oceanic plants in China. 

The results show that RGA-SVR outperforms the standard 

SVR and back-engendering (BP) neural organisation models 

based on the root mean square error (RMSE) and mean 

outright rate blunder (MAPE). This RGA-SVR model is a 

viable method of dealing with anticipated hydroponics water 

quality. 

Salisu Yusuf Muhammad et al. [6] introduced a machine 

learning-based water quality classification model. This 

article proposes a reasonable grouping model for ranking 

water quality based on AI calculations. The paper separated 

and analysed the presentation of various arrangement models 

and calculations to identify the key factors that contributed 

to the classification of the water nature of the Kinta River in 

Perak, Malaysia. Five mathematically precise models were 

evaluated, compared, and displayed. The Lazy model 

utilising the K Star calculation was the most accurate 

grouping model among the five models, with an exactness of 

86.67%. In general, wastewater is hazardous to human 

health, and it is essential to develop logical models to address 

this problem. 

Liao and Zhao [18] focused on dissolved oxygen for water 

quality prediction and proposed a combined model 

consisting of fuzzy neural networks (FNN), principal 

component analysis (PCA), and differential evolution by the 

BP algorithm (DEBP). PCA contributes to the dimension 

reduction of the input data vector and differential evolution 

algorithm. 

Wang et al. [17] demonstrated an LSTM (long- and short-

term memory) neural network-based deep learning approach. 

The LSTM NN model was constructed for prediction, 

followed by the collection of training data from Taihu Lake 

and the selection of appropriate parameters to improve neural 

network accuracy. Due to the nonlinear, dynamic, changing, 

and complex nature of the water parameter quality 

parameters, predicting WQ is a hard task. Due to these traits, 

traditional forecasting algorithms suffer from poor accuracy 

and increased processing complexity. 

From the existing research in water quality index prediction, 

several limitations have been identified. These include 

insufficient data, inadequate coverage, complex parameters, 

limited indices, and lack of standardization. Insufficient data 

and inadequate coverage of monitoring stations in 

developing countries limit the accuracy and reliability of 

water quality index predictions. The complex 

interrelatedness of water quality parameters makes it 

challenging to model and predict their interactions 

accurately, while the use of a limited number of water quality 

indices can result in oversimplified predictions. 

Additionally, the absence of standardization in water quality 

index calculations and interpretation can lead to inconsistent 

and unreliable results. Therefore, addressing these 

limitations and developing more accurate and reliable water 

quality index prediction models can be a crucial step towards 

improving water management and ensuring safe water for 

various uses. 

The objective of this study is to develop an improved water 

quality prediction model through the utilization of recurrent 

neural network variants and a temporal fusion transformer 

for Bharathapuzha river water data. In order to achieve this 

objective, physiochemical time series data from the 

Bharathapuzha River is collected from three sampling 

stations and the seasonal parameters are collected from the 

visual crossing site based on the location of sampling 

stations. The proposed model for river water quality 

prediction employs various deep learning architecture RNN 

variants such as Long Short-Term Memory, Gated Recurrent 

Unit, and Temporal Fusion Transformer. The performance of 

these models is assessed to determine their effectiveness in 

enhancing the prediction accuracy of water quality. 

 

2. DATA COLLECTION AND DATASET 

PREPARATION 

In this research, a water quality predictive model is 

constructed by identifying the trends from physicochemical 

and seasonal features in time series river water data.  The raw 

data with 26 physicochemical parameters such as pH, 

conductivity, turbidity, phenolphthalein alkalinity, total 

alkalinity, chloride, COD, TKN, ammonia, Ca. hardness, 

Mg. Hardness, sulphate, sodium, TSS, TDS, FDS, 

phosphate, boron, potassium, BOD, fluoride, Nitrate-N, DO, 
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TC and FC is collected from three sampling stations of 

Bharathapuzha River. The seasonal characteristics are 

obtained from the visual crossing website corresponding to 

locations of the sampling station across the river between 

January 2020 and December 2021. The analysis focuses on 

seasonal parameters, including dew, humidity, sea level 

pressure, precipitation, precip over, wind speed, wind 

direction, cloud cover, and visibility, which exhibit 

significant alterations across different seasons. These 

seasonal attributes are fused with physicochemical 

parameters in the development of a comprehensive dataset 

for this study.  

 

Physiochemical Parameters 

Physicochemical parameters are essential indicators of water 

quality, helping assess its suitability for different purposes. 

The 26 commonly used parameters include pH, which 

measures water acidity or alkalinity, and conductivity, 

reflecting the presence of dissolved salts and minerals. 

Turbidity indicates the water's cloudiness or haziness caused 

by suspended particles. The phenolphthalein and total 

alkalinity measure the ability of water to neutralize acids. 

Chloride and COD are used to assess contamination and 

pollution levels, while TKN and ammonia indicate nitrogen 

content. Calcium and magnesium hardness, sulphate, and 

sodium can contribute to scaling, corrosion, and other issues. 

TSS, TDS, FDS, phosphate, boron, potassium, BOD, 

fluoride, and nitrate-n affect the taste of water, odour, clarity, 

and nutrient content. DO is critical for aquatic life, while TC, 

FC, and total coliforms indicate the presence of pathogens 

and faecal contamination. 

 

Seasonal Parameters  

The impact of seasonal parameters on river water quality is 

influenced by sudden climate changes. Literature indicates 

that seasonal parameters influence the water quality index 

and its prediction over time series data. The relationship 

between simultaneous rainfall and humidity is strong, with 

relative humidity improving due to the evaporation of 

rainwater. The Davis Cup Anemometer is utilized to measure 

wind speed at a 3-meter height, providing a comparison with 

traditional 10-meter measurements. An increase in wind 

speed results in decreased transition time between 

evaporative stages at low-velocity values. Dew is a crucial 

source of river water, significantly impacting microclimates 

and the physiological state of vegetation. Temperature plays 

a crucial role in this assessment, serving as an indicator of 

certain species and the water body's activity. Humidity, 

another measure of atmospheric water vapor, holds similar 

importance in measuring water quality due to its potential 

impact on evaporation rates and temperature of the 

environment. Global warming will alter precipitation 

distribution by altering air temperatures and circulation 

patterns, further exacerbating the impact of seasonal factors 

on water quality. The alteration of physicochemical 

parameter acceptable limits due to seasonal factors results in 

lower water quality. This work considers seasonal features 

for the same study period, emphasizing their significance in 

improving the efficiency of the predictive models. 

 

WQI Calculation 

The WQI serves as a comprehensive measure of the water 

quality for the proposed system. It facilitates the monitoring 

of water quality changes over time and provides an 

assessment of the suitability of the water body The WQI is 

determined by the average of several indicators such as 

dissolved oxygen, pH, nutrient levels, and turbidity. It is then 

assigned a score on a scale ranging from 0 to 120, with higher 

scores indicating poor water quality. In this regard, the WQI 

is computed and included as the target variable along with 40 

independent variables for the WQI modelling prediction 

task. The dataset incorporates both physiochemical and 

seasonal parameters and comprises 2190 instances. 

The present study relied on a comprehensive dataset 

comprising twenty-six physiochemical attributes, ten 

seasonal attributes, and spatial parameters, referred to as the 

WQI-BP and tabulated in Table 1. The resulting time series 

data encompassed a total of 40 attributes, meticulously 

prepared to build the WQI prediction models.

 

Table 1: Sample Water Quality Data Collected from Sampling Stations and Visual Crossing Site 

Temp 29 27 30 28 30 30 30 28 29 29 29 29 27 28 28 30 28 27 30 

pH 

7.

31 

7.

60 

7.

43 

7.

27 

7.

63 

7.

20 

7.

52 

7.

47 

7.

38 

7.

34 

7.

36 

7.

28 

7.

32 

7.

21 

7.

61 

7.

68 

7.

34 

7.

20 

7.

61 

Conduc

tivity  

31

2 

31

6 

29

5 

29

0 

31

6 

29

3 

29

5 

30

8 

31

2 

29

3 

30

3 

30

6 

30

1 

31

0 

30

4 

29

3 

30

3 

30

0 

29

3 
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Turbidi

ty 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Phenol

phthAl

kalinity  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 

Alkalin

ity 77 75 76 79 80 78 79 76 79 80 80 78 75 80 78 78 80 76 75 

Cholrid

e 45 43 39 38 39 39 42 41 43 43 40 44 43 40 42 43 43 38 44 

COD 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

TKN 

0.

1 

0.

1 

0.

09 

0.

1 

0.

1 

0.

09 

0.

1 

0.

1 

0.

1 

0.

11 

0.

11 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

11 

0.

11 

0.

1 

Ammo

nia 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

0.

25 

Hardne

ss 

10

5 

10

0 

10

4 

10

8 

10

3 

10

7 

10

5 

10

5 

10

8 

10

7 

10

6 

10

1 

10

7 

10

0 

10

1 

10

7 

10

3 

10

8 

10

4 

Ca.Har

dness 54 50 51 53 50 50 51 53 51 50 52 50 54 53 51 52 52 52 51 

Mg.Har

dness 53 51 50 50 52 50 52 52 52 53 50 53 51 50 54 52 52 52 53 

Sulphat

e 

0.

10 

0.

31 

0.

14 

0.

28 

0.

31 

0.

18 

0.

07 

0.

21 

0.

58 

0.

60 

0.

59 

0.

68 

0.

61 

0.

79 

0.

51 

0.

54 

0.

59 

0.

71 

0.

71 

Sodium 16 15 17 17 18 15 15 15 17 18 15 16 16 17 17 15 15 15 15 

TDS 

18

0 

17

3 

17

1 

17

5 

18

0 

17

7 

18

0 

17

2 

18

2 

17

9 

18

1 

17

8 

17

3 

17

1 

17

4 

17

1 

17

1 

17

5 

18

0 

FDS 99 

10

1 94 

10

2 

10

1 

10

0 

10

0 95 94 

10

2 96 97 

10

1 99 95 98 

10

1 94 94 

TSS 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

30

0 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 8s 

Article Received: 25 June 2023 Revised: 12 July 2023 Accepted: 30 August 2023 

________________________________________________________________________________________________________ 

 
    826 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Phosph

ate 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

16 

0.

00

6 

0.

00

6 

Boron 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

0.

1 

Pottassi

um 

6.

38 

6.

40 

6.

46 

6.

42 

6.

45 

6.

41 

4.

10 

4.

25 

4.

45 

4.

21 

4.

49 

3.

41 

3.

34 

3.

43 

3.

18 

3.

11 

3.

15 

3.

44 

3.

24 

BOD 

1.

01 

1.

03 

1.

02 

1.

02 

1.

03 

1.

02 

1.

00 

1.

03 

1.

00 

1.

00 

1.

01 

1.

00 

1.

01 

1.

01 

1.

01 

1.

01 

1.

20 

1.

24 

1.

05 

Fluorid

e 

0.

58 

0.

45 

0.

50 

0.

45 

0.

46 

0.

56 

0.

43 

0.

37 

0.

41 

0.

33 

0.

53 

0.

10 

0.

28 

0.

40 

0.

11 

0.

22 

0.

16 

0.

10 

0.

11 

Nitrate-

N 

1.

29 

1.

03 

1.

51 

1.

19 

1.

78 

1.

49 

0.

92 

1.

29 

1.

10 

1.

76 

0.

41 

0.

91 

0.

61 

0.

50 

0.

31 

1.

15 

0.

93 

0.

96 

0.

76 

TC 

32

0 

30

6 

33

8 

31

2 

26

1 

33

8 

32

3 

29

3 

31

3 

31

1 

27

8 

33

4 

28

0 

32

6 

32

4 

25

3 

30

0 

26

8 

25

2 

FC 

28

1 

27

2 

25

8 

26

4 

25

4 

29

6 

26

5 

25

4 

26

5 

26

0 

29

9 

26

0 

25

9 

29

8 

26

5 

28

2 

25

1 

28

1 

25

3 

DO 

6.

12 

6.

25 

6.

12 

6.

25 

6.

24 

6.

18 

6.

26 

6.

06 

6.

06 

6.

07 

6.

28 

6.

23 

6.

03 

6.

04 

6.

27 

6.

22 

6.

02 

6.

23 

6.

11 

Dew 

15

.7 

14

.6 

13

.4 

13

.6 

15

.6 

17

.7 

18

.9 

19

.4 

18

.3 

17

.8 

17

.5 

17

.3 

17

.5 

17

.4 

17

.3 

18

.3 

18

.7 19 

20

.1 

Humidi

ty 

59

.3

0 

56

.7

2 

51

.8

9 

53

.0

6 

58

.8

0 

62

.7

9 

68

.9

1 

68

.6

3 

65

.7

1 

63

.8

0 

63

.3

3 

63

.5

5 

65

.5

9 

64

.1

6 

62

.2

0 

65

.1

7 

67

.2

3 

65

.8

0 

69

.3

0 

Sealeve

lpressur

e 

10

16

.6

0 

10

17

.1

0 

10

15

.8

0 

10

15

.7

0 

10

14

.8

0 

10

14

.8

0 

10

15

.5

0 

10

15

.5

0 

10

13

.7

0 

10

14

.5

0 

10

14

.2

0 

10

13

.4

0 

10

13

.2

0 

10

12

.9

0 

10

12

.7

0 

10

11

.9

0 

10

11

.8

0 

10

10

.9

0 

10

10

.8

0 

Precipit

ation  0 2 0 4 18 

19

.4

1 

14

.8

1 14 5 

11

.8

5 

13

.6 4 

35

.1

7 

9.

56 

17

.7 

14

.5

5 

2.

06 

0.

5 

24

.5 
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Precipc

over 0 

4.

17 0 

8.

33 

4.

17 

8.

33 

8.

33 

4.

17 

8.

33 

8.

33 

4.

17 

4.

17 

12

.5 

4.

17 

12

.5 

12

.5 

12

.5 

4.

17 

4.

17 

Windsp

eed 

16

.3 

14

.4 

13

.1 

15

.4 14 

18

.7 

40

.2 

13

.6 

14

.4 

14

.9 14 14 

13

.7 

13

.3 

11

.9 

9.

4 

11

.6 

11

.6 

9.

9 

Winddi

r 

52

.9 

62

.3 

61

.7 

68

.2 

56

.5 

69

.3 

11

4.

6 95 

94

.9 

65

.1 

99

.1 

96

.3 

84

.6 

51

.8 

72

.7 

14

0.

8 

10

0.

4 

71

.9 

12

9.

3 

Cloud 

cover 

27

.4 

17

.9 

5.

5 

14

.1 

14

.6 16 

32

.3 

42

.5 

26

.3 14 

14

.3 

12

.5 

30

.8 

22

.9 

23

.2 

26

.1 

27

.4 

33

.1 

71

.1 

Visibili

ty 

5.

5 6 

5.

7 

5.

9 

5.

6 

5.

5 

4.

8 

5.

3 

5.

1 

5.

4 

5.

5 

5.

7 

5.

2 

5.

2 

5.

4 

5.

2 

5.

3 

5.

6 

5.

2 

 

Exploratory Data Analysis  

The collected river water quality data is subjected to 

Exploratory Data Analysis (EDA) in order to comprehend 

the properties of the data and evaluate the significance of 

each parameter in generating the water quality index. 

Statistical methods, such as heatmaps, boxplot analysis, pair 

plot analysis, and histograms are utilized to analyse and 

understand the distribution of parameter values. Fig. 1a 

depicts a bar graph analysis of humidity, wind speed, cloud 

cover, visibility, and physicochemical parameters while 

Fig.1b displays the parameters that negatively correlated 

with WQI, including pH, turbidity, FDS, TSS, boron, TC, 

cloud cover, and wind speed. Boxplot studies revealed that 

seasonal parameters like wind speed and cloud cover 

exhibited a wide range of values, varying between 10 and 

270 for wind speed and 0 to 100 for cloud cover as illustrated 

in Fig.1c. Min-Max approach is used to normalise parameter 

values to standard ranges, wind speed and cloud cover are 

standardised. Additionally, a heatmap is used alongside 

Pearson correlation to visualize and analyse the correlation, 

both positive and negative, between parameters. 

 

  
Fig.1a Bar graph analysis        Fig.1b Heatmap analysis 
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Fig. 1c. Boxplot Analysis of Attributes 

 

Through the process of EDA, it is discovered that certain 

instances within the dataset contained missing values which 

required elimination. Consequently, data cleaning is 

performed to ensure data accuracy. The min-max 

normalization is applied to parameters such as conductivity, 

total coliform, wind speed and cloud cover to be in a normal 

range. The EDA provided valuable insights into attribute 

distributions and parameter correlations, thereby presenting 

appropriate solutions for data modelling and pre-processing 

requirements.  

Data Pre-processing 

Feature selection is a crucial process in predictive modelling, 

involving the identification of relevant parameters that 

significantly contribute to predicting the target variable. In 

this study, the select K best algorithm was utilized to 

determine essential features in calculating the water quality 

index. Based on the select K best feature selection algorithm, 

conductivity ranked first in estimating the water quality 

index, followed by ammonia and phosphate, while the 

negatively ranked attributes such as boron and phenolpth 

alkalinity were deemed insignificant and, thus, removed 

from the dataset. The feature selection method enhanced the 

river water quality dataset, resulting in the development of 

the WQI-BP dataset, which comprises 2190 instances and 38 

attributes and is a valuable resource for training the deep 

neural network. 

3. WQI PREDICTION MODEL 

The present study offers a solution to the challenge of 

anticipating the water quality index by framing it as a 

regression problem tackled through RNN variants and TFT 

architecture. RNN variants are highly adept at characterizing, 

classifying, and effectively modelling data inputs, thanks to 

their intricate connection of nodes with multiple hidden 

layers, where two visible layers are deployed as input and 

output layers to strengthen the predictive accuracy of the 

model.  TFT works by combining multiple layers of 

transformer blocks to capture long-term dependencies in the 

time series data. The input layer takes in the input WQI-BP 
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time series data and converts it into a numerical 

representation. The encoder layers use self-attention 

mechanisms to process the input data and generate feature 

representations for each instance in the series and allow 

information from past and future time steps to be fused into 

the representation for each step. The architecture of the 

proposed WQI prediction model is illustrated in Fig. 3, where 

the pre-processed data is fed through the input layer of the 

RNN variants and TFT architecture and the final prediction 

is made through its output layer. 

 

 

Fig. 2  Proposed WQI Model Architecture 

 

The utilization of deep learning architectures, including 

recurrent neural networks, long short-term memory, and 

gated recurrent networks, has been specifically designed and 

developed to facilitate the training of sequence data. These 

architectures have been chosen in this research work to 

construct a river water quality index prediction model. 

Among these architectures, Recurrent Neural Network 

(RNN) stands out as it utilizes the result from the preceding 

section as input for the next. The Hidden state, which stores 

crucial information about a sequence, is the primary 

component of RNN. However, RNNs are susceptible to the 

vanishing gradients problem due to their limited ability for 

long-term memory. The primary challenge for RNN is 

maintaining data consistency across several time steps. To 

address this issue, gated recurrent networks and Long Short-

term Memory have been employed. Long Short-term 

Memory (LSTM) recurrent unit aims to recall all the earlier 

data encountered by the network and to forget irrelevant 

information. Furthermore, each LSTM recurrent unit stores 

a vector referred to as the Internal Cell State, which 

conceptually describes the information retained by the 

previous LSTM recurrent unit. On the other hand, Gated 

Recurrent Unit (GRU) tackles the vanishing gradient 

problem by utilizing an update gate and reset gate, acting as 

two vectors that determine the information sent to the output. 

One distinguishing feature of these deep learning 

architectures is that they are trained to retain knowledge from 

a long time ago without erasing it or removing extraneous 

data. 

Temporal Fusion Transformer 

The Temporal Fusion Transformer is a deep learning model 

that is proposed for the prediction of time-series WQI data. 

TFT is a fusion of various neural networks, including 

feedforward neural networks, convolutional neural 

networks, and the Transformer. The model uses a 

hierarchical structure to capture different levels of temporal 

dependencies and combines them to make accurate 

predictions. TFT can handle complex and dynamic patterns 

in time-series data, making it suitable for a wide range of 

applications such as traffic forecasting, energy demand 

prediction, and financial time series analysis.   

The importance of TFT in time series data analysis lies in its 

ability to handle complex and high-dimensional data. Unlike 

traditional time series models, such as ARIMA and 

exponential smoothing, TFT can handle multiple input time 

series with different temporal resolutions, missing data, and 

irregularly sampled data. TFT also incorporates attention 

mechanisms to enable the model to focus on specific parts of 

the input time series, allowing it to capture complex and 

nonlinear relationships between different variables. 

Furthermore, TFT can handle both continuous and 

categorical features, making it versatile for a wide range of 

time series forecasting tasks. 

The benefits of using TFT include its ability to handle a wide 

range of temporal patterns, including seasonality, long-term 
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dependencies, and irregularities in the data. TFT is also 

designed to handle missing data and can effectively handle 

situations where data is irregularly sampled. Another benefit 

of TFT is that it can provide interpretability, allowing users 

to understand the factors driving the predictions. TFT has 

shown promising results in various real-world applications, 

including energy demand prediction and stock price 

forecasting, making it a valuable tool for time-series 

analysis. 

The Temporal Fusion Transformer is an architecture 

designed for time series forecasting tasks, illustrated in Fig. 

3. It incorporates the standard Transformer architecture with 

the idea of temporal convolution and gating mechanisms. 

TFT has an encoder-decoder structure, where the encoder is 

responsible for capturing the input time series temporal 

dependencies and the decoder is responsible for generating 

the output forecasts. TFT uses a temporal convolution layer 

in the encoder to capture local temporal dependencies. It also 

uses a gating mechanism to selectively weigh the importance 

of past and present information for predicting the future. 

Additionally, TFT uses an autoregressive approach to 

generate the output forecasts. The decoder takes the 

encoder's output and recursively generates future time steps 

one by one. TFT also includes a multi-scale input module 

that allows the model to capture patterns at different time 

scales. It also has a hybrid attention mechanism that 

incorporates both local and global temporal dependencies.       

           

 
Fig.3. Architecture of Temporal Fusion Transformer 

 

Model building and Evaluation 

The 80% of instances of the WQI-BP dataset prepared as 

above are given as input to RNN and its variants LSTM, 

GRU and TFT architecture for training the networks. The 

best hyperparameters are chosen during model training to 

make the model more effective at mapping the input features 

as independent variables to the target variable as the 

dependent variable. 

Hidden layers, dense layers, optimizer, epoch, momentum, 

batch size, activation function, and dropout are examples of 

hyperparameters that are utilised in deep learning 

architectures to enhance model accuracy and fine-tune the 

WQI forecasting model. Hidden layers are the layers that are 

in between the input and output layers. A layer that is densely 

connected is one in which each layer receives input from all 

of the layers below it. The range is set between 5 and 10 

units, and dense layers improve overall accuracy. Optimizers 

are methods that alter the properties of the neural network, 

like its weights and learning rate, to reduce losses and 

address optimization issues. The number of dataset complete 

iterations required is determined by the epoch size. 

Momentum is a unique hyperparameter that enables the 

search direction to be determined not only by the gradient 

from the current step but also by the gradients from previous 

steps. The model’s nonlinearity is introduced through 

activation functions. The activation function can split them 

into different layers and get a reduced output of the density 

layer. By passing randomly selected layers and limiting 

sensitivity to particular layer weights, the dropout layer helps 

prevent training overfitting. The speed at which a deep model 

replaces a previously learned concept with a new one is 

determined by the learning rate. Finally, the WQI prediction 

models are built by representation learning from the input 

instances using RNN, LSTM, GRU and TFT with proper 
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hyperparameters settings. 

The effectiveness of the WQI forecasting model is evaluated 

using the evaluation metrics such as R2 score, root mean 

squared error, mean squared error, and mean absolute error. 

An estimator's mean squared error is the average of error 

squares or the difference between the predicted value and the 

actual value. The average difference between the predicted 

value and the actual value is what is used to calculate the 

mean absolute error. The root mean square error is used to 

measure a model's prediction error for quantitative data, 

which is a metric that indicates how well a regression line 

fits the data points. The R2 score value determines the 

accuracy of the model. If the R2 score value is high then the 

model is considered to be good in predicting the target 

variable and if the R2 score is less than 0.5 then the model is 

not considered to be good.  The prediction models are found 

to be effective when the error rate is less with a high R2 score 

value. In this work, the performance of the WQI predictive 

models built with physicochemical and seasonal data is 

evaluated using the metrics with 20% of the dataset as the 

test set.  

4. EXPERIMENT AND RESULTS 

In this work, using Python libraries, the experiments were 

carried out by implementing the deep learning architectures.  

The RNN, LSTM, GRU and TFT networks have been trained 

with the training dataset WQI-BP, which contains tagged 

samples and which is the 80% of the instances of the WQI-

BP dataset. Evaluation of the prediction models is carried out 

to check the efficiency of the model using the metrics like R2 

score, root mean squared error, mean squared error, and 

mean absolute error with the test data set. 

Results of RNN Based WQI prediction model 

The performance of the RNN-based WQI prediction model 

(RNN-WQI-BP model) is assessed by conducting 

experiments with a range of epochs, varying from 20 to 500. 

At 20 epochs, the model exhibits an MAE of 0.647, MSE of 

0.662, RMSE of 0.8136, and R2 score of 0.584. With the 

progression to 50 epochs, a noticeable reduction is observed 

in MAE of 0.638, MSE of 0.642, RMSE of 0.8012, and a 

slight improvement in R2 score of 0.589. Continuing the 

training process to 100 epochs results in further refinement 

of predictions, as indicated by the diminishing MAE of 

0.631, MSE of 0.628, and RMSE of 0.7925 values, 

accompanied by a modest increase in R2 score of 0.593. 

As the training continues, particularly at 150 epochs, the 

predictive accuracy is enhanced, demonstrated by the 

decreasing MAE of 0.627, MSE of 0.612, and RMSE of 

0.7823 values, with a corresponding improvement in R2 

score of 0.606. The trend of refinement persists at 200 

epochs, where the model attains lower MAE of 0.614, MSE 

of 0.584, and RMSE of 0.7642 values, contributing to a 

higher R2 score of 0.627. At the maximum epoch value of 

500, the model predictive prowess becomes evident, as 

demonstrated by the notably reduced MAE of 0.598, MSE of 

0.523, RMSE of 0.7232, and a favourable R2 score of 0.642. 

The performance evaluation of the WQI prediction model 

based on the WQI-BP dataset with traditional RNN-WQI-BP 

is shown in Table 2 and depicted in Fig.4. 

 

Table 2. Prediction Results of RNN-WQI-BP Model for Various Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-BP 

20 0.647 0.662 0.8136 0.584 

50 0.638 0.642 0.8012 0.589 

100 0.631 0.628 0.7925 0.593 

150 0.627 0.612 0.7823 0.606 

200 0.614 0.584 0.7642 0.627 

500 0.598 0.523 0.7232 0.642 

 

 
Fig.4. Prediction Results of RNN-WQI-BP Model for Various Epochs 
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Results of LSTM Based WQI prediction model  

The performance of the LSTM-based WQI prediction model 

(LSTM-WQI-BP model) is assessed by conducting 

experiments with a range of epochs, varying from 20 to 500.  

At 20 epochs, the model exhibits a MAE of 0.591, MSE of 

0.613, RMSE of 0.7829, and an R2 score of 0.592. As the 

training process advances to 50 epochs, a gradual 

enhancement is observed in the model performance, leading 

to decreased MAE of 0.585, MSE of 0.596, and RMSE of 

0.7720, accompanied by a marginally improved R2 score of 

0.604. Continuing the training to 100 epochs demonstrates 

further refinement in predictive accuracy, highlighted by a 

lower MAE of 0.563, MSE of 0.583, and RMSE of 0.7635, 

while showcasing a notable improvement in the R2 score of 

0.627. At 150 epochs, the model continues to progress, with 

reduced MAE of 0.552, MSE of 0.547, and RMSE of 0.7396, 

leading to an elevated R2 score of 0.636. As the training 

iterations reach 200 epochs, reflecting decreased MAE of 

0.543, MSE of 0.535, and RMSE of 0.7314, resulting in a 

higher R2 score of 0.657. Finally, at 500 epochs, the model 

reaches a noteworthy level of predictive accuracy, evidenced 

by lower MAE of 0.524, MSE of 0.513, and RMSE of 

0.7162, culminating in an impressive R2 score of 0.684. The 

results prove that increasing the number of epochs leads to 

better performance of the LSTM model in predicting the 

WQI-BP values. The performance evaluation of the LSTM 

model is shown in Table 3 and illustrated in Fig.5. 

 

Table 3. Prediction Results of LSTM-WQI-BP Model for Various Epochs 

Dataset Epochs  MAE MSE RMSE R2 Score 

WQI-BP 

20 0.591 0.613 0.7829 0.592 

50 0.585 0.596 0.7720 0.604 

100 0.563 0.583 0.7635 0.627 

150 0.552 0.547 0.7396 0.636 

200 0.543 0.535 0.7314 0.657 

500 0.524 0.513 0.7162 0.684 

 

 
Fig.5. Prediction Analysis of LSTM-WQI-BP Model for Various Epochs 

 

Results of GRU Based WQI prediction model  

The performance of the GRU-based WQI prediction model 

(GRU-WQI-BP model) is assessed by conducting 

experiments with a range of epochs, varying from 20 to 500.  

At 20 epochs, the model exhibits specific performance 

metrics, including a MAE of 0.612, MSE of 0.617, RMSE of 

0.7855, and an R2 score of 0.591. As the training advances 

to 50 epochs, the model demonstrates incremental 

improvement, leading to lower MAE of 0.605, MSE of 0.59, 

and RMSE of 0.7681, accompanied by a higher R2 score of 

0.618. Subsequently, with 100 epochs, the model's 

performance continues to enhance, resulting in a reduced 

MAE of 0.572, while maintaining a similar MSE of 0.571 

and exhibiting a lower RMSE of 0.7556 alongside an 

elevated R2 score of 0.624. The trend of progress is 

maintained at 150 epochs, where the model showcases 

further refinement in its predictions, leading to a decreased 

MAE of 0.564, lower MSE of 0.552, and RMSE of 0.7430, 

and aR2 score of 0.645. Continuing to 200 epochs, the model 

consistently improves its predictive accuracy, as reflected by 

a decreased MAE of 0.547, lower MSE of 0.531, and RMSE 

of 0.7287, coupled with an increased R2 score of 0.651. 
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Finally, at 500 epochs, the model attains a notable level of 

predictive excellence, with reduced MAE of 0.536 and MSE 

of 0.527, further showcasing a lower RMSE of 0.7259, 

culminating in an impressive R2 score of 0.672. The 

performance of the GRU-WQI-BP prediction with various 

epochs is shown in Table 4 and depicted in Fig.6. 

 

Table 4. Prediction Results of GRU-WQI-BP Model for Various Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-BP 

20 0.612 0.617 0.7855 0.591 

50 0.605 0.59 0.7681 0.618 

100 0.572 0.571 0.7556 0.624 

150 0.564 0.552 0.7430 0.645 

200 0.547 0.531 0.7287 0.651 

500 0.536 0.527 0.7259 0.672 

 

 
Fig.6. Prediction Analysis of GRU-WQI-BP Model for Various Epochs 

 

Results of TFT Based WQI prediction model  

In the case of TFT based WQI model, the hyperparameter 

setting for TFT forecasting involved exploring a prediction 

time step of 30, setting the encoder layer to 4, using a fixed 

batch size of 64, varying state sizes from 32 to 256, and 

setting it to 64, trying out learning rates from 0.0001 to 0.1, 

varying the number of attention heads from 1 to 8, applying 

dropout rates from 0 to 0.4. The hyperparameter settings of 

the TFT-WQI-BP model is tabulated in Table 5.  

 

Table 5:  Setting of Special Hyperparameters for TFT Training 

Time 

steps 

Encoders 

layers 

Batch 

sizes 

State 

size 

Learning 

rates 

Attention 

heads 

Dropout 

rate 

Loss 

Function a 

Loss 

Function b 

Loss 

Function g 

30 4 64 64 0.01 4 0.20, 0.30 0.80 0.01 0.10 

   

The performance of the TFT-based WQI prediction model 

(TFT-WQI-BP model) is assessed by conducting 

experiments with a range of epochs, varying from 20 to 500. 

At 20 epochs, the model exhibits specific performance 

metrics, including a MAE of 0.532, MSE of 0.516, RMSE of 

0.7183, and an R2 score of 0.623. As the training progresses 

to 50 epochs, the model showcases incremental refinement, 

manifesting in reduced MAE of 0.518, lower MSE of 0.498, 

and a decreased RMSE of 0.7057, accompanied by an 

elevated R2 score of 0.635. Subsequently, at 100 epochs, the 

model performance continues to advance, leading to a further 

reduced MAE of 0.507, with corresponding decreases in both 

MSE of 0.482 and RMSE of 0.6943, ultimately culminating 

in an enhanced R2 score of 0.646. As the model is further 

trained with 150 epochs, it continues to demonstrate 

improved predictive accuracy, reflected in the reduction of 

MAE of 0.481, lower MSE of 0.465, and a diminished 

RMSE of 0.6819, along with an elevated R2 score of 0.662. 
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Continuing the training process to 200 epochs, the model 

consistently enhances its predictive capability, resulting in a 

notable decrease in MAE of 0.448, MSE of 0.451, and 

RMSE of 0.6716, along with a substantial increase in R2 

score of 0.687. Finally, with 500 epochs, the model achieves 

a commendable level of predictive excellence, as evidenced 

by the decreased MAE of 0.407 and MSE of 0.436, coupled 

with a further reduction in RMSE 0.6603, culminating in an 

impressive R2 score of 0.705. The performance of the TFT-

WQI-BP prediction with various epochs is shown in Table 6 

and illustrated in Fig.7.  

 

Table 6.  Prediction Results of TFT-WQI Model with WQI-BP Dataset for various Epochs 

Dataset Epochs MAE MSE RMSE   R2 Score 

WQI-BP 

20 0.532 0.516 0.7183 0.623 

50 0.518 0.498 0.7057 0.635 

100 0.507 0.482 0.6943 0.646 

150 0.481 0.465 0.6819 0.662 

200 0.448 0.451 0.6716 0.687 

500 0.407 0.436 0.6603 0.705 

 

 
Fig.7. Prediction Analysis of TFT-WQI Model with WQI-BP Dataset for Various Epochs 

 

Comparative Analysis 

The prediction results of WQI models for various epochs and 

dropouts have been observed while implementing deep 

learning algorithms to discover the best prediction results. It 

is proved that the models trained with 500 epochs with other 

hyperparameters such as adam optimizer, momentum as 0.8, 

dropout as 0.3 and activation function as relu for RNN, 

LSTM, GRU, and architecture TFT, produced the best results 

and are shown in Table 7 and depicted in Fig. 4. 

 

Table 7. Overall Performance Results of WQI Models for Bharathapuzha Data 

Dataset Epoch Models MAE MSE RMSE R2 Score 

WQI-BP 500 

RNN-WQI-BP 0.598 0.523 0.7232 0.642 

LSTM-WQI-BP 0.524 0.513 0.7162 0.684 

GRU-WQI-BP 0.536 0.527 0.7259 0.672 

TFT-WQI-BP 0.407 0.436 0.6603 0.705 
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Fig.8. Prediction Performance of Deep Learning Algorithms with Bharathapuzha Data 

 

From the above results, it is observed that the TFT-based 

WQI prediction model shows promising results with a high 

R2 score value and less error rate. The mean absolute error 

for TFT based forecasting model is found less as compared 

to RNN, LSTM and GRU algorithms. The root mean squared 

error is observed to be less for the TFT-WQI-BP model when 

compared with RNN-WQI-BP, LSTM-WQI-BP and GRU-

WQI-BP prediction model results. The R2 score value 

defines the accuracy of the model and is observed to be high 

for the TFT-WQI-BP forecasting model compared with other 

prediction models. 

The investigations made in this research proved that the deep 

learning approach is useful for developing predictive models 

like water quality index prediction. It is confirmed that the 

recent deep learning approach improves the prediction 

accuracy of different WQI predictive models. Through 

feature selection, the association between the pool of 

predictors and the targeted variable is strengthened which 

enables deep neural network architectures TFT, GRU, 

LSTM, and RNN to improve the learning of trends in the 

data. The prediction rate of WQI models is increased through 

learning the self-extracted features in TFT, GRU, LSTM, and 

RNN networks. The error rate of trained models is decreased 

by properly configuring the hyperparameters during network 

training. 

5. CONCLUSION 

This study demonstrated the importance of temporal fusion 

transformer architecture with the Bharathapuzha dataset 

containing physiochemical and seasonal attributes. The 

application of deep learning architectures for river water 

quality time series forecasting was attempted to prove that 

deep learning is an effective approach for accurate WQI 

prediction. The data was collected from the sampling stations 

and visual crossing site during the period 2020 to 2021 and a 

time series dataset was developed. The river water quality 

forecasting model has been designed and developed using 

deep learning architectures such as RNN, LSTM, GRU and 

TFT. The performance of the TFT-WQI-BP model was 

evaluated and compared with the prediction results of models 

trained with other deep learning models. From the evaluation 

results, it is observed that the TFT-based WQI prediction 

model provides an enhanced and efficient WQI prediction 

model. The developed model can even be used as pre-trained 

models with transfer learning to improve the efficiency of the 

prediction model.  
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