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Abstract 

Cellular technologies have evolved continuously from the 1st to the 5th generation (5G) to meet the exponentially growing needs for 
bandwidth, throughput, and latency. However, energy consumption has risen proportionally with each generation, driven by the need for new 

hardware to support additional applications. Notably, 5G, which already consumes four times more energy than 4G, is expected to cause a 

significant spike in energy consumption. This paper focuses on energy consumption at the base station and access network levels, which together 

account for approximately 80% of energy consumption in mobile networks. The application of machine learning techniques to improve energy 
efficiency in these components is explored. Specifically, efficient base station deployment strategies, adaptive operational modes, and access 

network technologies such as massive MIMO and millimeter waves, which employ machine learning to enhance energy efficiency, are reviewed 

in depth. The paper also proposes a framework combining efficient base station deployment methods with machine learning-based switching 

between different operational modes based on traffic load. Additionally, an adaptive beamforming methodology involving the identification of 

hotspots, user association, sub-channel, and power allocation in heterogeneous networks is discussed. 
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Introduction 

Evolution of Cellular Technologies 

Historically, the main aim of mobile communication 

standards has been to gradually increase data rates. The 

advent of 5G technology represents a significant leap 

forward, designed not only to increase data rates but also to 

support a wide range of services and sustain the connectivity 

of the rapidly expanding Internet of Things (IoT) devices. 

According to Statista (2022), the number of IoT devices 

worldwide is projected to almost triple from 8.74 billion in 

2020 to more than 25.4 billion by 2030. To meet these 

demands, 5G incorporates three primary service sets: 

1. Enhanced Mobile Broadband (eMBB): Designed 

to provide faster data rates of up to 10 Gbps, catering 

to high-bandwidth applications like video streaming 

and virtual reality. 

2. Ultra-Reliable Low-Latency Communication 

(URLLC): Critical for mission-critical services 

where negligible error rates and low latency are 

paramount, such as autonomous vehicles and 

industrial automation. 

3. Massive Machine Type Communications 

(mMTC): Developed to handle the high device 

density introduced by IoT, with a focus on energy 

efficiency. 

Energy Consumption Challenges 

The diverse requirements of 5G have led to a significant 

increase in energy consumption within the Information and 

Communications Technology (ICT) sector. Predictions by 

Fonseca et al. (2019) suggest that ICT could account for up 

to 30% of global power consumption by 2025. Base stations, 

which consume up to 80% of the total energy in cellular 

networks, are the most promising area for enhancing energy 

efficiency (Alsharif et al., 2017; Cai et al., 2016; Lahdekorpi 

et al., 2017). The introduction of small cells in 5G systems 

(Abrol and Jha, 2016; Alamu et al., 2020; Johnson, 2018; 

Meng et al., 2020) and the increased interest in massive 

MIMO (Anandharajan et al., 2019; Li et al., 2017; Perez et 

al., 2021; Rajoria et al., 2018) have further exacerbated the 
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energy requirements, highlighting the urgent need for 

efficient resource and spectral management strategies. 

 

 

5G Enabling Technologies 

To leverage the capabilities of 5G, several enabling 

technologies have been adopted, including Software Defined 

Networking (SDN), Network Functions Virtualization 

(NFV), Cloud Radio Access Network (CRAN), millimeter 

waves, massive MIMO, and Heterogeneous Networks 

(HetNets). These technologies are applied at various levels of 

cellular networks, including the core, access, and edge 

networks. Machine learning-based energy-efficient schemes 

have been developed to optimize the use of these technologies 

(Mao et al., 2021; Salah et al., 2021). 

Energy Consumption Breakdown 

Gruber et al. (2009) highlighted that base stations accounted 

for approximately 57% of a network's total power 

consumption. Han et al. (2011) further identified that power 

amplifiers contribute 50% to 80% of the base stations’ energy 

consumption. Consequently, energy efficiency has emerged 

as a key capability of 5G, as established by the International 

Telecommunications Union (ITU) (Poirot et al., 2019). 

Review of Existing Research 

Energy Optimization at Base Station Level 

The literature on energy optimization at the base station level 

predominantly focuses on three strategies: switch-off 

techniques, positioning and deployment strategies, and 

transmission power control. While most studies consider only 

two operational modes—on and off (Gao et al., 2020; Han et 

al., 2016; Hoffmann et al., 2021; Salem et al., 2019; Ye and 

Zhang, 2020)—El-Amine et al. (2019) introduced a Q-

learning approach for adaptive sleep modes, offering a more 

nuanced approach that reduces energy consumption by up to 

90% without compromising service quality. 

 

For base station deployment, Dai and Zhang (2020) proposed 

a network planning tool using received signal strength 

prediction. Although their simulation showed an 18.5% 

higher coverage rate compared to real-world deployment, 

energy consumption analysis was limited. Borah et al. (2019) 

suggested additional deployment scenarios, such as uniform 

or cluster-based deployments, resulting in increased energy 

efficiency of up to 6 kbps/watt for dense deployments. 

Xiao et al. (2020) proposed a reinforcement learning-based 

power control mechanism (RLIC) to reduce downlink inter-

cell interference, achieving a 12.6% improvement in average 

throughput compared to traditional solutions. 

Energy Optimization at Access Network Level 

At the access network level, energy optimization strategies 

have primarily focused on user association, subchannel, and 

power allocation. Zhang et al. (2020) addressed the user 

association problem using Lagrange dual decomposition, 

while semi-supervised learning and deep neural networks 

(DNN) were employed for subchannel and power allocation, 

respectively. The DNN scheme achieved energy efficiency 

levels varying between 4 × 10^11 and 6 × 10^12 bits/J. 

 

 

Giannopoulos et al. (2021a, 2021b) explored reducing energy 

consumption by controlling downlink channel transmission 

power and reconfiguring user association schemes. The T-

DQN method they developed proved effective in dense 

macro-cell environments, offering an energy efficiency of 12 

Mbps/W in a two-micro-cell scenario. 

Sanguinetti et al. (2018) focused on downlink power 

allocation in massive MIMO networks, using deep neural 

networks to predict efficient power allocation profiles based 

on user device positions. The M-MSE scheme they proposed 

achieved a spectral efficiency of 4 bits/Hz, outperforming the 

MR precoding scheme. 

Advantages and Disadvantages of Machine Learning 

Machine learning offers several advantages over traditional 

big data processing methods, particularly in 5G/6G networks 
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that require the processing of vast data volumes and quick 

adaptation to rapidly changing environments. Key benefits 

include: 

 

 

1. Pattern Recognition: Machine learning can easily 

identify trends and patterns by analyzing large 

volumes of data, making accurate predictions of 

future events. 

2. Autonomous Decision-Making: Machine learning 

algorithms can make decisions and improve 

performance without human intervention, making 

them ideal for dynamic 5G/6G environments. 

3. Multi-Dimensional Data Handling: Machine 

learning algorithms excel at handling multi-

dimensional data, crucial for complex 5G/6G 

scenarios. 

4. Enhanced Learning Speed: Machine learning 

algorithms significantly improve their performance 

over time, especially in large-scale problems. 

However, machine learning also has drawbacks, such as the 

need for large, unbiased datasets for training and substantial 

computational resources for execution (Mughees et al., 2020; 

Qiu et al., 2016). Despite these challenges, machine learning 

remains the most viable strategy for optimizing 5G/6G 

networks. 

  

Identified Research Gaps 

Several gaps exist in the current literature on energy 

optimization in 5G/6G networks. Most research at the base 

station level, such as Hoffmann et al. (2021) and Gao et al. 

(2020), considers only two operational modes, leading to 

increased latency. Furthermore, signaling bursts are not 

consistently factored into energy consumption calculations, 

and most simulation environments do not accurately 

represent 5G/6G scenarios, often focusing on single-cell 

environments (Donevski et al., 2019; Sanguinetti et al., 

2018). Crucially, existing research is limited to optimizing a 

single network layer or a single aspect of base station 

operations, with no studies exploring the hybridization of 

optimization algorithms across base station and access 

network layers. 

Proposed Frameworks for Energy Optimization 

This paper proposes three novel frameworks for energy 

optimization at the base station and access network levels: 

1. Holistic Base Station Optimization: This 

framework combines the approaches of Gao et al. 

(2020), Borah et al. (2019), and Xiao et al. (2020) to 

optimize base station deployment, switching 

mechanisms, and downlink power transmission 

based on traffic loads. 

2. Access Network Optimization: Building on the 

work of Giannopoulos et al. (2021a, 2021b) and Ge 

and Lv (2018), this framework optimizes downlink 

channel transmission power, user association 

schemes, and adaptive antenna arrays based on 

traffic loads. 

 

3. Cross-Layer Optimization: This framework 

integrates the Q-learning-based adaptive sleep 

modes proposed by El-Amine et al. (2019) with the 

deep learning-based radio resource management in 

NOMA networks proposed by Zhang et al 
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