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Abstract: Let 𝑋 be an infinite compact metric space without isolated points and 𝑓: 𝑋 → 𝑋  continuous on 𝑋 . Consider 

the space 𝐾(𝑋), the set of all compact subsets of 𝑋 with Hausdorff metric 𝐻 and the induced map 𝑓:𝐾(𝑋) → 𝐾(𝑋) defined 

by 𝑓(𝐴) = 𝑓(𝐴). In this paper we establish some properties of weakly uniformly recurrence and asymptotically sensitive 

dependence on initial conditions (to be defined below) on hyper space 𝐾(𝑋). 

 

1. Introduction: 

All spaces considered in this paper are  compact metric 

space without isolated points. Consider the space 

𝐾(𝑋), the set of all compact subsets of 𝑋 with Hausdorff 

metric 𝐻 and the induced map 𝑓:𝐾(𝑋) → 𝐾(𝑋) defined 

by 𝑓(𝐴) = 𝑓(𝐴).The Hausdorff metric 𝐻 is defined by 

𝐻(𝐴, 𝐵) = inf sup{𝑑(𝑎, 𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}(see.1). It is 

known that the continuity of 𝑓  implies the continuity of 

𝑓 (see.1). We refer 𝑓 as the induced map of 𝑓. 

 

2.Asymptotically sensitive Dependence On Initial 

Conditions: 

Theorem 2.1 

Let 𝑓 is transitive then there exist a  Cantor set 𝐶 such 

that for any 𝐴 ∈ 𝐾(𝑋) and any positive integer 𝑀, 

lim
𝑁→∞

𝐻(𝑓𝑀+𝑁(𝐴), 𝑓𝑁(𝐶)) ≥ 𝐻(𝐴, 𝑓𝑀(𝐴)). 

 

Proof: 

Let 𝐴 ∈ 𝐾(𝑋) and 𝑚  is any positive integer. Let {𝑎𝑛} be 

an arbitrary decreasing sequence of positive numbers 

with 𝑎𝑛 → 0 . Let 𝑓:𝐾(𝑋) → 𝐾(𝑋) be transitive, then 

there exist a cantor set 𝐶 ⊆ 𝑋 with 𝑜𝑟𝑏(𝑓, 𝐶) is dense in 

𝐾(𝑋)(see 2). So there exist for every 𝑎𝑛, a positive 

integer 𝑏𝑛 such that 𝑓𝑏𝑛(𝐶) so close to 𝐴 such that 

𝐻(𝑓𝑏𝑛(𝐶), 𝐴) <
𝑎𝑛

2
 and 𝐻(𝑓 (𝑓𝑏𝑛(𝐶), 𝑓𝑀(𝐴)) <

𝑎𝑛

2
 . 

This implies that 𝐻 (𝑓𝑏𝑛(𝐶), 𝑓𝑏𝑛 + 𝑀(𝐶)) ≥

𝐻 (𝐴, 𝑓𝑀(𝐴)) − 𝑎𝑛 (By Triangle Inequality). 

Hence the result. 

 

Definition 2.1 

Let 𝛿 be a positive number and 𝐴 be a subset of 𝑋 with 

at least two points and 𝑓: 𝑋 → 𝑋 We say that 𝑓 is 

asymptotically sensitive dependence on initial 

conditions, if for every 𝑥 ∈ 𝑋 and every open 

neighbourhood 𝑁(𝑥) of 𝑥, there is a point 𝑦 ∈ 𝑁(𝑥) with 

limsup
𝑛→∞

𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 𝛿. 

 

Definition 2.2 

Let 𝑓: 𝑋 → 𝑋. 𝑓 has 𝛿- sensitive dependence on initial 

conditions, if for every point 𝑥 ∈ 𝑋 and every positive 

number 𝜖 there is a point 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) < 𝜖 and a 

positive integer  

𝑛 such that 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) ≥ 𝛿. 

 

 Theorem 2.2 

Assume that 𝑓 is transitive. Then 𝑓 has  sensitive 

dependence on initial conditions if and only if 𝑓 has  

asymptotically sensitive dependence on initial 

conditions. 

 

Proof: 

If 𝑓 has asymptotically sensitive dependence on initial 

conditions, then it is clear that 𝑓 also has sensitive 

dependence on initial conditions. 

So assume that 𝑓 has sensitive dependence on initial 

conditions. Since 𝑓 is transitive, there exist a Cantor set 

𝐶 in 𝐾(𝑋) with dense orbit. Then for some positive 

integer 𝛿, 𝑓 has 𝛿- sensitive dependence on initial 

conditions. 

Let 𝐴 ∈ 𝐾(𝑋) be any point and let 𝑁(𝐴) be any 

neighbourhood of 𝐴. Then there exist a point 𝐵 ∈ 𝑁(𝐴) 

and a positive integer 𝑠 such that 𝐻 (𝑓𝑠(𝐴), 𝑓𝑠(𝐵)) >

𝛿. Since 𝑓 is continuous and since orbit of 𝐶 is dense in 

𝐾(𝑋), there exist  𝑈 ∈ 𝑜𝑟𝑏(𝑓,̃ 𝐶) ∩ 𝑁(𝐴) which is so 

close to 𝐴 with 𝐻 (𝑓𝑠(𝑈), 𝑓𝑠(𝐴)) <
1

2
[𝐻 (𝑓𝑠(𝐴), 𝑓 𝑠(𝐵)) − 𝛿]. But since the orbit of 𝑈 is 

dense in 𝐾(𝑋) , there exist a positive integer 𝑟 such that 

𝑓𝑟(𝑈) is close to the point 𝐵 with 

 𝑓𝑟(𝑈) ∈ 𝑁(𝐴) and 𝐻 (𝑓𝑠+𝑟(𝑈), 𝑓𝑠(𝐵)) <
1

2
[𝐻 (𝑓𝑠(𝐴), 𝑓 𝑠(𝐵)) − 𝛿]. 
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This implies that  𝐻 (𝑓𝑠+𝑟(𝑈), 𝑓𝑠(𝐵)) > 𝛿 (By Triangle 

Inequality). 

Thus, we have either limsup 
𝑛→∞

𝐻(𝑓𝑛(𝐴) , 𝑓𝑛(𝑈)) >
𝛿

2
 or 

 limsup 
𝑛→∞

𝐻(𝑓𝑛(𝐴) , 𝑓𝑛(𝑓𝑟(𝑈)) >
𝛿

2
. 

Since 𝑈 ∈ 𝑁(𝐴) and 𝑓𝑟(𝑈) ∈ 𝑁(𝐴), we have the result. 

 

3.Weakly Uniformly Recurrence On Hyperspaces 

Definition 3.1  

Let 𝑓: 𝑋 →  𝑋. We say that 𝑓 is weakly uniformly 

recurrent with respect to the metric 𝑑, for 𝑥 ∈ 𝑋, there 

exist a strictly increasing sequence {𝑛𝑖} of natural 

numbers such that 𝑑(𝑥, 𝑓𝑛𝑖(𝑥)) → 0. 

 

Theorem 3.1 

Assume that 𝑓 is weakly uniformly recurrent with 

respect to the Hausdorff  metric 𝐻. Then for any two 

distinct compact subsets 𝐴 and 𝐵 in 𝑋, 

 limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) ≥ 𝐻(𝐴, 𝐵) > 0. 

In particular, 𝑓 is one-to-one. 

 

Proof: 

Assume that 𝑓 is weakly uniformly recurrent with 

respect to the metric 𝐻. Assume on the contrary that 

there exist two distinct compact sets 𝐴 and 𝐵 in 𝐾(𝑋) 

with  

limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) < 𝐻(𝐴, 𝐵). Then there exist 

a positive number 𝜖 < 1 such that 

limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) < 𝜖𝐻(𝐴, 𝐵). So  there is a 

positive integer 𝑁(𝜖) such that  

𝐻 (𝑓𝑛(𝐴), 𝑓𝑛(𝐵)) < 𝜖𝐻(𝐴, 𝐵), ∀ 𝑛 ≥ 𝑁(𝜖). Since 𝑓 is 

weakly uniformly recurrent , there exist a positive 

integer 𝑝 > 𝑁(𝜖) such that 𝐻 (𝐴, 𝑓𝑝(𝐴)) < 4−1(1 −

𝜖)𝐻(𝐴, 𝐵) and 𝐻 (𝐵, 𝑓𝑝(𝐵)) < 4−1(1 − 𝜖)𝐻(𝐴, 𝐵). 

For this 𝑝, we have 𝐻(𝐴, 𝐵) ≤  𝐻 (𝐴, 𝑓𝑝(𝐴)) +

𝐻 (𝑓𝑝(𝐴), 𝑓𝑝(𝐵)) + 𝐻 (𝐵, 𝑓𝑝(𝐵)) ≤ 4−1(1 −

𝜖)𝐻(𝐴, 𝐵) + 𝜖𝐻(𝐴, 𝐵) + 4−1(1 − 𝜖)𝐻(𝐴, 𝐵) = (1 +
𝜖)2−1𝐻(𝐴, 𝐵) < 𝐻(𝐴, 𝐵)  

is a contradiction. There fore we conclude that  

limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) ≥ 𝐻(𝐴, 𝐵) > 0. 

 

Theorem 3.2 

Assume that 𝑓 is weakly uniformly recurrent with 

respect to the metric 𝐻 and assume that 

limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵))  is finite for every 𝐴 and 𝐵 

in 𝐾(𝑋). Then 𝐻∗: 𝐾(𝑋) × 𝐾(𝑋) → ℝ defined by 

𝐻∗(𝐴, 𝐵) = limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) is a metric on 

𝐾(𝑋). 

 

Proof: 

Clear from the definition of 𝐻∗. 

 

Theorem 3.3 

Assume that 𝑓 is weakly uniformly recurrent with 

respect to the metric 𝐻.Then the following hold. 

(i) 𝐻∗(𝐴, 𝐵) ≥ 𝐻(𝐴, 𝐵) 

(ii) 𝑓 is an isometry with respect to the metric 𝐻∗ 

(iii) 𝑓 is weakly uniformly recurrent with respect to 

the metric 𝐻∗. 

 

Proof: 

(i) Clear from Theorem 3.1 

(ii) H∗ (𝑓(A), 𝑓(B)) =

limsup
𝑚→∞

𝐻 (𝑓𝑚(𝑓(𝐴)), 𝑓𝑚(𝑓(𝐵))) =

limsup
𝑚→∞

𝐻 (𝑓𝑚+1(𝐴), 𝑓𝑚+1(𝐵)) = 𝐻(𝐴, 𝐵). 

ie, 𝐻∗ is an isometry. 

(iii) Since 𝑓 is weakly uniformly recurrent with 

respect to the metric 𝐻, we have for 𝐴 ∈ 𝐾(𝑋), there is 

a strictly increasing sequence of natural numbers 

{𝑛𝑖}such that 𝐻 (𝐴, 𝑓𝑛𝑖(𝐴)) → 0. That is, for a given 

𝛿 > 0, there exist a natural number 𝑝 > 0 such that 

𝐻 (𝐴, 𝑓 𝑠(𝐴)) < 𝛿, ∀𝑠 ≥ 𝑝. 

Then it is clear that 𝐻 (𝑓𝑚(𝐴), 𝑓𝑠+𝑚(𝐴)) < 𝛿, ∀𝑠 ≥

𝑝, 𝑚 > 0. 

Consequently  limsup
𝑚→∞

𝐻 (𝑓𝑚(𝐴), 𝑓𝑚(𝐵)) ≤ 𝛿. 

Hence the result. 
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