Properties of Weakly Uniformly Recurrence on Hyperspaces

Amalraj.P1*, Vinod Kumar P.B2

^{1*}Assistant Professor, Mathematics, S. D. College, Alappuzha, Kerala, India, APJ Abdul Kalam Technological University, Kerala, India

²Professor, Department of Mathematics, Rajagiri School of Engineering And Technology, Kerala, India, APJ Abdul Kalam Technological University, Kerala, India

Abstract: Let X be an infinite compact metric space without isolated points and $f: X \to X$ continuous on X. Consider the space K(X), the set of all compact subsets of X with Hausdorff metric H and the induced map $\tilde{f}: K(X) \to K(X)$ defined by $\tilde{f}(A) = f(A)$. In this paper we establish some properties of weakly uniformly recurrence and asymptotically sensitive dependence on initial conditions (to be defined below) on hyper space K(X).

1. Introduction:

All spaces considered in this paper are compact metric space without isolated points. Consider the space K(X), the set of all compact subsets of X with Hausdorff metric H and the induced map $\tilde{f}:K(X) \to K(X)$ defined by $\tilde{f}(A) = f(A)$. The Hausdorff metric H is defined by $H(A,B) = \inf \sup\{d(a,b), a \in A, b \in B\}$ (see.1). It is known that the continuity of f implies the continuity of f (see.1). We refer f as the induced map of f.

2.Asymptotically sensitive Dependence On Initial Conditions:

Theorem 2.1

Let \tilde{f} is transitive then there exist a Cantor set C such that for any $A \in K(X)$ and any positive integer M, $\lim_{N \to \infty} H(\tilde{f}^{M+N}(A), \tilde{f}^{N}(C)) \ge H(A, \tilde{f}^{M}(A))$.

Proof:

Let $A \in K(X)$ and m is any positive integer. Let $\{a_n\}$ be an arbitrary decreasing sequence of positive numbers with $a_n \to 0$. Let $\tilde{f}:K(X) \to K(X)$ be transitive, then there exist a cantor set $C \subseteq X$ with $orb(\tilde{f},C)$ is dense in K(X)(see 2). So there exist for every a_n , a positive integer b_n such that $\tilde{f}^{b_n}(C)$ so close to A such that $H(\tilde{f}^{b_n}(C),A) < \frac{a_n}{2}$ and $H(\tilde{f}(\tilde{f}^{b_n}(C),\tilde{f}^M(A)) < \frac{a_n}{2}$. This implies that $H(\tilde{f}^{b_n}(C),\tilde{f}^{b_n}+M(C)) \ge H(A,\tilde{f}^M(A)) - a_n$ (By Triangle Inequality). Hence the result.

Definition 2.1

Let δ be a positive number and A be a subset of X with at least two points and $f: X \to X$ We say that f is asymptotically sensitive dependence on initial conditions, if for every $x \in X$ and every open neighbourhood N(x) of x, there is a point $y \in N(x)$ with $\limsup_{x \to \infty} d(f^n(x), f^n(y)) \ge \delta$.

Definition 2.2

Let $f: X \to X$. f has δ - sensitive dependence on initial conditions, if for every point $x \in X$ and every positive number ϵ there is a point $y \in X$ with $d(x,y) < \epsilon$ and a positive integer

n such that $d(f^n(x), f^n(y)) \ge \delta$.

Theorem 2.2

Assume that \tilde{f} is transitive. Then \tilde{f} has sensitive dependence on initial conditions if and only if \tilde{f} has asymptotically sensitive dependence on initial conditions.

Proof:

If \tilde{f} has asymptotically sensitive dependence on initial conditions, then it is clear that \tilde{f} also has sensitive dependence on initial conditions.

So assume that \tilde{f} has sensitive dependence on initial conditions. Since \tilde{f} is transitive, there exist a Cantor set C in K(X) with dense orbit. Then for some positive integer δ , \tilde{f} has δ - sensitive dependence on initial conditions.

Let $A \in K(X)$ be any point and let N(A) be any neighbourhood of A. Then there exist a point $B \in N(A)$ and a positive integer s such that $H\left(\tilde{f}^s(A), \tilde{f}^s(B)\right) > \delta$. Since \tilde{f} is continuous and since orbit of C is dense in K(X), there exist $U \in orb(\tilde{f},C) \cap N(A)$ which is so close to A with $H\left(\tilde{f}^s(U), \tilde{f}^s(A)\right) < \frac{1}{2} \left[H\left(\tilde{f}^s(A), \tilde{f}^s(B)\right) - \delta\right]$. But since the orbit of U is dense in K(X), there exist a positive integer r such that $\tilde{f}^r(U)$ is close to the point B with

$$\tilde{f}^r(U) \in N(A)$$
 and $H\left(\tilde{f}^{s+r}(U), \tilde{f}^s(B)\right) < \frac{1}{2} \left[H\left(\tilde{f}^s(A), \tilde{f}^s(B)\right) - \delta \right].$

This implies that $H\left(\tilde{f}^{s+r}(U), \tilde{f}^{s}(B)\right) > \delta$ (By Triangle Inequality).

Thus, we have either $\limsup_{n\to\infty} H(\tilde{f}^n(A), \tilde{f}^n(U)) > \frac{\delta}{2}$ or $\lim\sup_{n\to\infty} H(\tilde{f}^n(A), \tilde{f}^n(\tilde{f}^r(U)) > \frac{\delta}{2}$.

Since $U \in N(A)$ and $\tilde{f}^r(U) \in N(A)$, we have the result.

3. Weakly Uniformly Recurrence On Hyperspaces Definition 3.1

Let $f: X \to X$. We say that f is weakly uniformly recurrent with respect to the metric d, for $x \in X$, there exist a strictly increasing sequence $\{n_i\}$ of natural numbers such that $d(x, f^{n_i}(x)) \to 0$.

Theorem 3.1

Assume that \tilde{f} is weakly uniformly recurrent with respect to the Hausdorff metric H. Then for any two distinct compact subsets A and B in X,

$$\limsup_{m\to\infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) \ge H(A, B) > 0.$$

In particular, \tilde{f} is one-to-one.

Proof:

Assume that \tilde{f} is weakly uniformly recurrent with respect to the metric H. Assume on the contrary that there exist two distinct compact sets A and B in K(X) with

 $\limsup_{m \to \infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) < H(A, B).$ Then there exist a positive number $\epsilon < 1$ such that

 $\limsup_{m\to\infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) < \epsilon H(A,B).$ So there is a positive integer $N(\epsilon)$ such that

 $H\left(\tilde{f}^n(A), \tilde{f}^n(B)\right) < \epsilon H(A,B), \forall n \geq N(\epsilon)$. Since \tilde{f} is weakly uniformly recurrent , there exist a positive integer $p > N(\epsilon)$ such that $H\left(A, \tilde{f}^p(A)\right) < 4^{-1}(1 - \epsilon)H(A,B)$ and $H\left(B, \tilde{f}^p(B)\right) < 4^{-1}(1 - \epsilon)H(A,B)$.

For this p, we have $H(A,B) \leq H\left(A,\tilde{f}^p(A)\right) + H\left(\tilde{f}^p(A),\tilde{f}^p(B)\right) + H\left(B,\tilde{f}^p(B)\right) \leq 4^{-1}(1-\epsilon)H(A,B) + \epsilon H(A,B) + 4^{-1}(1-\epsilon)H(A,B) = (1+\epsilon)2^{-1}H(A,B) < H(A,B)$

is a contradiction. There fore we conclude that $\limsup_{m\to\infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) \ge H(A, B) > 0.$

Theorem 3.2

Assume that \tilde{f} is weakly uniformly recurrent with respect to the metric H and assume that

 $\limsup_{m\to\infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) \text{ is finite for every } A \text{ and } B$ in K(X). Then $H^*: K(X) \times K(X) \to \mathbb{R}$ defined by $H^*(A,B) = \limsup_{m\to\infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right)$ is a metric on K(X).

Proof:

Clear from the definition of H^* .

Theorem 3.3

Assume that \tilde{f} is weakly uniformly recurrent with respect to the metric H. Then the following hold.

- (i) $H^*(A,B) \ge H(A,B)$
- (ii) \tilde{f} is an isometry with respect to the metric H^*
- (iii) \tilde{f} is weakly uniformly recurrent with respect to the metric H^* .

Proof:

- (i) Clear from **Theorem 3.1**
- (ii) $H^*(\tilde{f}(A), \tilde{f}(B)) =$

 $\limsup_{m\to\infty} H\left(\tilde{f}^m(\tilde{f}(A)), \tilde{f}^m(\tilde{f}(B))\right) =$

 $\limsup_{m\to\infty} H\left(\tilde{f}^{m+1}(A), \tilde{f}^{m+1}(B)\right) = H(A, B).$

ie, H^* is an isometry.

(iii) Since \tilde{f} is weakly uniformly recurrent with respect to the metric H, we have for $A \in K(X)$, there is a strictly increasing sequence of natural numbers $\{n_i\}$ such that $H\left(A, \tilde{f}^{n_i}(A)\right) \to 0$. That is, for a given $\delta > 0$, there exist a natural number p > 0 such that $H\left(A, \tilde{f}^s(A)\right) < \delta, \forall s \geq p$.

Then it is clear that $H\left(\tilde{f}^m(A), \tilde{f}^{s+m}(A)\right) < \delta, \ \forall s \ge p, m > 0.$

Consequently $\limsup_{m \to \infty} H\left(\tilde{f}^m(A), \tilde{f}^m(B)\right) \leq \delta$.

Hence the result.

References:

- A. Illaness, S.B.Nadler Jr, Hyperspaces: Fundamntals and Recent Advances, Pure App. math-Vol 216(1999)
- 2) Compcat Sets with Dense Orbit in 2^X, Palona Hernandez, Jefferson King,,Hector Mendez, Topology Proceedings, vol.40(2012)