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ABSTRACT 

This research explores the subject of battery heat management in BEVs by using ML to anticipate the Battery Health Factor 

(BHF) using actual driving data. A total of 65 data points were retrieved from an MG ZS EV powered by a lithium-ion 

battery and cooled by liquid systems. The vehicle was tested at varying speeds (30-100 km/h), weights (100-350 kg), and 

environmental temperatures (20-35°C). By utilizing GridSearchCV for model optimization and 10-fold cross-validation 

for validation, we were able to attain a R² score of 0.9003, as well as low RMSE and MAE. To find out which traits were 

most relevant for predicting BHF, we used SHAP (Shapley additive explanations). Important factors for the battery health 

indicator were found during this investigation to be SoC, MaxCh, BT, and BCL. Based on SHAP's findings, raising the 

SoC improves BHF, but raising the BT and BCL levels has the reverse impact. Merging ML with physics-based models 

can further enhance system performance and prediction accuracy, and ML models show tremendous promise for enhancing 

BEV battery heat management, according to this study.  
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INTRODUCTION 

As electric vehicles (EVs) have advanced rapidly, 

interest has grown in enhancing their economy, 

performance, and lifetime. The battery is crucial to EV 

performance and lifetime. The most prevalent power 

source in electric cars is lithium-ion (Li-ion) batteries, 

which are sensitive to operational conditions, notably 

temperature, which can affect their thermal health and 

performance. Maintaining battery thermal heath is 

essential for the durability and safety of electric vehicles 

(EVs), especially battery electric cars. Battery thermal 

management systems (BTMS) help keep EV battery 

temperatures ideal. Extreme heat or cold can degrade 

batteries, impair efficiency, and trigger thermal runaway. 

Without proper temperature management, capacity 

fading, battery life, and driving range decrease. Thus, 

understanding battery health dynamics and anticipating 

thermal behavior is crucial to improve BTMS design and 

EV dependability. Advanced machine learning (ML) 

methods can anticipate battery thermal health, identify 

degradation causes, and improve thermal management 

strategies, offering a possible solution to these 

difficulties. Machine learning algorithms can model and 

predict battery performance under different conditions 

using large amounts of real-world driving data, revealing 

how SoC, battery temperature, charging rates, and 

environmental factors affect battery health over time. 

Using real-world driving data, this study will apply the 

Multi-Layer Perceptron (MLP) model to forecast BEV 

battery thermal health. The main goal is to construct a 

model that can predict the Battery Health Factor (BHF), 

a key parameter for battery thermal health, using data 

from an MG ZS EV with a lithium-ion battery and liquid 

cooling system. The dataset includes battery, vehicle 

motion, environmental, and cooling system 

characteristics. The study uses machine learning to better 

understand how these aspects affect battery health and 

create more efficient and dependable BEV battery 

management systems. 
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Battery Thermal Management in BEVs 

Temperature greatly affects BEV lithium-ion battery 

performance. Battery performance degrades at hot and 

low temperatures. Overheating the battery breaks down 

the electrolyte and grows the solid electrolyte interphase 

(SEI) layer, which raises internal resistance and 

decreases efficiency. Thermal runaway, when the 

battery's internal temperature rises uncontrolled, can also 

arise from prolonged high temperatures. However, low 

temperatures diminish lithium ion mobility, lowering 

battery efficiency and increasing internal resistance. 

Lithium plating, when lithium metal forms on the 

battery's anode, can create short circuits and short battery 

life at extremely low temperatures. Modern BEVs have 

excellent thermal management systems that keep battery 

temperatures between 20°C and 40°C to reduce these 

dangers. The battery is cooled during high temperatures 

and heated during cold temperatures by these 

technologies to maximize performance and durability. 

Despite the necessity of thermal management, battery 

behavior is complicated and dynamic, making thermal 

health prediction difficult. SoC, charging rates, ambient 

variables, and vehicle motion interact in ways that are 

hard to model using standard approaches. By examining 

massive datasets and finding patterns that conventional 

analysis may miss, machine learning can help solve these 

problems. 

Machine Learning in Battery Health Prediction 

Machine learning predicts well in several sectors, 

including battery management systems. ML algorithms 

may identify complex battery performance connections 

in vast data sets. Dynamic factors impact battery health 

and thermal behavior, making machine learning 

excellent for predicting. An MLP model, an artificial 

neural network, predicts battery thermal health in this 

study. MLP models are suitable for analyzing complex 

data like battery performance in different conditions 

because they can represent non-linear relationships. 

Multiple layers of connected neurons process data and 

predict using MLP model patterns. The model's 

performance is evaluated using R², RMSE, and MAE, 

which indicate prediction accuracy. Shapley Additive 

Explanations (SHAP) and the MLP model help us 

analyze forecasts and grasp feature importance. SHAP 

study shows which factors—state of charge, battery 

temperature, and vehicle speed—most impact battery 

health, improving battery management.  

Real-World Data Collection and Preprocessing 

This study used data from the MG ZS EV, a popular 

lithium-ion battery electric car with liquid cooling. The 

65 data points span a wide variety of driving situations, 

including ambient temperatures (20°C to 35°C), vehicle 

speeds (30 km/h to 100 km/h), and weights (100 kg to 

350 kg). The On-Board Diagnostics (OBD) II system 

provided real-time vehicle performance and battery 

health data. The dataset was preprocessed to remove 

duplicates, missing values, and outliers. The model's 

training and testing data must be clean and dependable 

for accurate predictions. 

Optimized MLP Model for Battery Health Prediction 

GridSearchCV was used to optimize this study's MLP 

model by searching for the optimum hyper parameters. 

To optimise model performance, key parameters such 

hidden layer neuron count, activation function, solver 

method, and learning rate were modified. To confirm that 

the model generalizes to new data, 10-fold cross-

validation split the dataset into ten subgroups and trained 

the model on different combinations of these subsets. 

MLP model performance was assessed using R² score, 

RMSE, and MAE metrics. R² score measures the 

accuracy of model predictions compared to actual values, 

with 1.0 signifying perfect accuracy. RMSE and MAE 

measure model error, with lower values indicating 

greater performance. 

REVIEW OF LITERATURE 

Yeh, Jeannie et al. (2023): This study analyzes EV 

market trends across 31 countries, using machine 

learning (ML) and PLS techniques to predict EV sales 

based on environmental, economic, and human 

development factors. The results confirm that ML 

algorithms can accurately predict EV sales, with factors 

like lifespan, renewable energy, and carbon emissions 

positively correlated with sales. Governments can use 

this model as a decision-support tool for promoting EV 

adoption. 

Kwon, Jihoon et al. (2023): The study focuses on 

optimizing Battery Electric Vehicle (BEV) driving 

profiles using deep Q-network reinforcement learning to 

extend battery life. The model evaluates driving styles 

and how they impact battery performance, demonstrating 

that optimizing speed profiles enhances energy economy 
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and battery life, particularly in areas with frequent speed 

changes. 

A. Gurusamy et al. (2023): This review discusses the 

importance of modeling and simulation for electric 

vehicle (EV) powertrains, highlighting how numerical 

simulations can improve the sizing and configuration of 

powertrain components under various driving 

conditions. It also covers the significance of driver 

controller models and localized driving cycles in 

optimizing EV performance. 

Das, Kaushik & Kumar, Roushan (2023): The article 

explores the role of machine learning in managing the 

state-of-health (SOH) and remaining usable life (RUL) 

of EV batteries. It focuses on predicting the aging process 

of lithium-ion batteries, offering insights into the 

methods for battery health estimation and the challenges 

of conventional battery management systems. 

Kamul, Azure et al. (2023): This bibliometric analysis 

reviews the use of machine learning in predicting battery 

status and behavior. It identifies gaps in the current 

literature regarding the prediction of battery safety and 

performance, suggesting areas for future research to 

improve the accuracy and reliability of battery 

predictions. 

OBJECTIVES OF THE STUDY  

1. To develop an MLP model for predicting 

Battery Health Factor (BHF) in BEVs using 

real-world driving data. 

2. To optimize the MLP model through 

hyperparameter tuning for improved prediction 

accuracy. 

HYPOTHESIS  

H1: There is a significant correlation between MLP 

predictions and BHF in BEVs. 

H2: There is a significant improvement in prediction 

accuracy through hyperparameter tuning of the MLP 

model. 

RESEARCH METHODOLOGY 

The lithium-ion MG ZS EV with liquid cooling provided 

65 data points for this investigation on BEV battery 

temperature control. To imitate real-world conditions, 

testing were done at 20–35°C, 30–100 km/h, and 100–

350 kg. OBD II data preparation deleted duplicates and 

missing values. To study nonlinear dynamics, 

GridSearchCV hyper parameters were adjusted and 10-

fold cross-validation tested an improved MLP model. 

Model metrics such as R², RMSE, and MAE assess 

performance. SHAP feature significance analysis 

provided transparent and accurate modelling. This helps 

analyze battery thermal management.  

DATA ANALYSIS 

Hypothesis testing determines how well the MLP model 

predicts BEV Battery Health Factor (BHF). As assessed 

in H1, MLP predictions are significantly associated with 

BHF if the p-value is less than 0.05. Hypothesis 2 

investigates if hyper parameter adjustment improves 

prediction accuracy. A p-value below 0.05 suggests 

significance. These results can guide future optimization 

efforts for BEV thermal management. If not significant, 

they indicate that the MLP model or tuning process does 

not increase accuracy.  

HYPOTHESIS TESTING:  

Hypothesis Test Used Result Significance Conclusion 

H1: There is a significant correlation 

between MLP predictions and BHF in 

BEVs. 

Pearson Correlation 

/ Regression 

Analysis 

[Result 

Value] 
[p-value] 

[Accept/Reject] based on 

significance level 

H2: There is a significant improvement in 

prediction accuracy through 

hyperparameter tuning of the MLP 

model. 

Paired t-test / 

ANOVA / Cross-

validation 

[Result 

Value] 
[p-value] 

[Accept/Reject] based on 

significance level 
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This study used an MLP model to analyze 65 data points 

and produced a R² score of 0.9003. With 14 attributes, 

the dataset covers battery, vehicle motion, environment, 

payload, and cooling system. Battery Health Factor 

(BHF), the SoH to BT ratio, measured thermal behavior 

and model performance.  

 

Figure 1. The framework of a battery 

 

Figure 2. Setting up a method to cool the batteries 

used in vehicle testing 

 

Figure 3. Aerial picture of the vehicle testing battery 

cooling system 

 

Figure 4. Locate the battery coolant reservoir (on 

the left) behind the hood. 

 

Figure 5. An in-depth look at the areas under the 

hood 

Table 1: The hyper parameters of the MLP 

algorithm 

Hyper 

parameters 

Optimized 

Value 

Battery Health 

Factor 

hidden_layer_sizes 100 Battery Health 

activation ReLU Battery Health 

solver Adam Battery Health 
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Hyper 

parameters 

Optimized 

Value 

Battery Health 

Factor 

learning_rate Constant Battery Health 

max_iter 200 Battery Health 

max_fun 15,000 Battery Health 

random_state 7 Battery Health 

 

The table shows the optimal hyperparameters for the 

MLP model that predicts battery health factor. The 

hidden layer has 100 neurons and the ReLU activation 

function to capture complicated patterns and introduce 

non-linearity. The Adam solution optimizes efficiently 

by dynamically modifying the learning rate, while the 

constant rate enables steady training. For complete 

training and convergence, 200 iterations and 15,000 

function evaluations are specified. The random_state is 

fixed at 7 for repeatability. These parameters optimize 

the model's battery health prediction for 30 data rows and 

65 data points. 

The flexible, adaptable neural network improves forecast 

accuracy over physics-based and regression models, 

especially in complicated settings. The dataset was 

separated into 10 non-overlapping folds for 10-fold 

cross-validation to test the ML model. Each cycle uses 

90% of the data for training and 10% for testing, ensuring 

all data points participate. Variance is reduced and 

performance is assessed reliably. We evaluated the 

model's prediction accuracy using measures like R², 

RMSE, and MAE.  

.  

Figure 6. Processing flow for algorithms. 

SHAP (Shapley additive explanations) improves ML 

model interpretability by assigning feature contributions 

to output. SHAP handles variable scaling and captures 

local feature relevance across values, unlike linear 

models. Table 2 shows 30 rows and 65 data points for 

battery states, vehicle motion, ambient environment, 

cargo, and cooling systems, with the battery health factor 

as the result. Figure 9 shows that the MLP model, 

assessed using R², RMSE, and MAE, has a R² of 0.9003 

and minimal error margins (±10% and ±20%). A 

summary plot utilizing SHAP values shows feature 

relevance and its influence on predictions, revealing the 

link between feature values and model results (Figure 

10). 

 

Table 2. Dataset variables 

Grouping Input Name Range Mean SD 

Battery conditions Max charge (kW) 0–94 83.927 11.284 

 Charging rate (kW) −71.49–49.75 −8.823 7.582 

 Battery current (A) −122.3–181.1 21.631 19.019 

 Battery voltage (V) −95.53–448.75 346.254 145.924 

 State of charge (%) 14.6–90.5 60.688 18.232 

 State of health (%) 90.59–90.88 90.762 0.064 

 Battery temperature (°C) 24–34 29.652 2.307 

Vehicle motion Velocity (km/h) 27–108.57 67.092 23.737 

 Distance (km) 0.034–171.291 51.634 38.489 
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Grouping Input Name Range Mean SD 

Ambient Humidity (%) 37.36–68.42 56.271 5.433 

Payload Weight (kg) 100–350 214.379 101.313 

Cooling system Battery coolant (°C) 21.5–33.5 27.960 2.311 

 Coolant (°C) 23–38 28.926 2.807 

 Air compressor (kW) 0–655.35 0.304 10.919 

Output Battery health factor (%/°C) 0.456–3.326 2.0525 0.625 

 

A high level of accuracy was demonstrated by the model, 

which achieved R², RMSE, and MAE values of 0.9003, 

0.1862, and 0.1505, respectively. The majority of the 

predicted spots were in close proximity to the ideal 

middle line. Figure 10, which serves as a summary 

figure, shows Shapley values, which indicate the 

significance and impact of each characteristic on 

predictions. The feature values are used to color-code the 

points, and their horizontal location reflects the Shapley 

value. This allows us to see how each feature impacts the 

overall picture. 

 

Figure 7. A comprehensive analysis of 21 

characteristics 

  

Figure 8. Correlation between 14 characteristics. 

Features are ordered by prediction influence, with each 

point representing an observation. The horizontal axis 

SHAP value illustrates feature values' influence, with 

color representing greater or lower values. Higher battery 

health (BHF) improves state of charge (SoC) forecasts, 

whereas max charge (MaxCh) and battery temperature 

(BT) negatively affect predictions. Lower values are 

good. Battery-related traits are usually worse than other 

variable groups due to BHF. 

 

Figure 9. Performance of MLP model. 

The SHAP dependency graphic shows how critical 

characteristics impact model predictions and SHAP 

values. SoC and MaxCh affect Battery Health Factor 

(BHF) as shown in Figure 11a. SoC between 20–70% 

increases BHF and MaxCh, then declines over 70%. A 

high SoC improves BHF and requires less MaxCh, while 

a low SoC worsens it. Maintaining SoC between 20–80% 

reduces heat and voltage stress, improving battery health 

and longevity. 
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Figure 10. The summary plot of SHAP. 

Charging a battery to its full capacity (100%) can be 

harmful since it increases the voltage and thermal stress, 

which shortens the lifespan of the battery and speeds up 

the degeneration of its internal components. The 

increased heat produced by fully charged batteries, 

particularly during intensive usage, accelerates the loss 

of capacity and increases the risk of thermal runaway. In 

addition to increasing internal resistance and decreasing 

efficiency, high charge levels promote the formation of 

the solid electrolyte interphase (SEI) layer. In addition, 

calendar aging accelerates the degradation of fully 

charged batteries. 

 

Figure 11 SoC-MaxCh, BT-SoC, and BCL-SoC 

SHAP dependency graphs. 

Higher battery temperature (BT) lowers battery health 

factor (BHF), as seen in Figure 11 and Figure 11c. Low 

temperatures enhance internal resistance, whereas high 

temperatures promote breakdown. Maintaining battery 

temperature with proper cooling systems improves 

performance and safety. MLP models can forecast BEV 

battery health, but physics-based models can enhance 

accuracy and expand their use. 

DISCUSSION  

Battery Health Factor (BHF) predictions in Battery 

Electric Vehicles (BEVs) utilizing real-world driving 

data were investigated in this work using machine 

learning techniques, namely the Multi-Layer Perceptron 

(MLP) model. By modeling real-world variables 

including changing environmental temperatures, vehicle 

speeds, payloads, and the efficiency of the battery 

cooling system, the approach was developed to deliver a 

solid analysis. To guarantee accurate and thorough data 

collecting, the data were obtained from an MG ZS EV 

that had a lithium-ion battery and a liquid cooling system. 

On-Board Diagnostics (OBD) II was used for processing. 

With a R² value of 0.9003, the modified MLP model 

demonstrated remarkable performance, capturing the 

nonlinear dynamics and intricate interactions among 

different factors impacting battery health. We reduced 

the likelihood of overfitting and guaranteed the model's 

dependability by using GridSearchCV to fine-tune its 

hyperparameters and then verifying it using 10-fold 

cross-validation. The model's excellent prediction 

accuracy was further validated by metrics including R², 

RMSE, and MAE. Including SHAP analysis improves 

the MLP model's interpretability, which is one of the 

methodology's benefits. By analyzing SHAP values, we 

were able to determine the weighted relevance of 

parameters like SoC, MaxCh, and BT, which shed light 

on how these factors impact the BHF prediction. For 

example, in line with conventional wisdom on battery 

management, we found that keeping the state of charge 

(SoC) between 20 and 80% helps keep batteries healthy 

by lowering voltage and heat stressors. High battery 

temperature and charging to full capacity accelerate 

deterioration and limit battery longevity, according to the 

study. This highlights the significance of coolant systems 

for efficient thermal control of batteries, especially in 

preventing thermal runaway. An all-encompassing 

strategy for managing batteries, taking into account 

vehicle-related aspects, is essential for peak 

performance, as was shown by the research into payload 

and vehicle motion and their effects on battery health. 
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Despite the MLP model's impressive accuracy, it's 

crucial to acknowledge that machine learning models 

lack domain-specific expertise, which makes it difficult 

for them to forecast battery health. Specifically, the 

present method does not include thorough physics-based 

modeling, which implies that the model's forecasts could 

not completely account for the complexities of battery 

deterioration processes. To further enhance the MLP 

model's forecast accuracy and broaden its application to 

other BEV types and battery technologies, future 

research should concentrate on merging it with physics-

based techniques. In conclusion, our research shows that 

machine learning has great promise for improving BEV 

performance and longevity through better temperature 

control of the batteries. To achieve even more precise and 

dependable predictions, it will be crucial to further 

enhance and integrate SHAP analysis with physical 

models, but real-world data, sophisticated machine 

learning models, and SHAP analysis create a formidable 

tool for forecasting and controlling battery health in 

BEVs. 

CONCLUSION  

This research proves that BEV Battery Health Factor 

(BHF) predictions using real-world driving data can be 

achieved with the use of machine learning, and more 

especially Multi-Layer Perceptron (MLP) models. The 

MLP model demonstrated promising accuracy in 

forecasting battery health by evaluating 65 data points 

obtained from the MG ZS EV; its R³ score was 0.9003. 

Battery temperature (BT), State of Charge (SoC), Max 

Charge (MaxCh), and Battery Coolant Temperature 

(BCL) were all identified as critical parameters 

impacting battery health in the study. By delving into the 

intricate web of interactions between these variables, 

SHAP research uncovered important information for 

better thermal management of batteries. The results 

highlight the importance of controlling temperature and 

keeping the system-on-chip (SoC) in maximizing battery 

performance and longevity. The results show that 

machine learning models have a lot of promise in this 

area, but to make them even more predictive and useful 

in a wider range of BEV uses, researchers should look at 

how to combine them with physics-based methods. 
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