A Categorical Approach to the Study of Non-Commutative Motives

Ranjeet Kumar

Research Scholar, University Department of Mathematics, Lalit Narayan Mithila University (LNMU), Darbhanga

Dr. H. C. Jha

Ex-HoD, University Department of Mathematics, Lalit Narayan Mithila University (LNMU), Darbhanga

Dr. Vipul Snehi

Assistant Professor, University Department of Mathematics, Lalit Narayan Mithila University (LNMU), Darbhanga

Abstract

We introduce a novel categorical framework for the study of non-commutative motives, drawing connections between derived categories of non-commutative spaces and classical motives in algebraic geometry. By leveraging advancements in homological algebra and category theory, we develop tools to analyze and classify non-commutative algebraic structures through their associated motives. Our approach provides new insights into the structure of non-commutative spaces and establishes a foundation for further exploration in both algebraic geometry and non-commutative geometry.

Keywords: Non-commutative motives; Derived categories; Homological algebra; Algebraic geometry; Non-commutative geometry; Triangulated categories

Mathematics Subject Classification (2020): 14A22; 18E30; 16E35

1 Introduction

The concept of motives originated in the work of Grothendieck as a way to unify various cohomology theories in algebraic geometry [1]. Motives capture the essential features of algebraic varieties by abstracting their cohomological properties. While classical motives are well-studied in the context of commutative algebraic geometry, the extension to non-commutative spaces remains an active area of research.

Non-commutative geometry, pioneered by Connes [2], generalizes geometric concepts to non-commutative algebras, providing powerful tools for studying spaces that cannot be described by commutative rings. The interplay between non-commutative geometry and algebraic geometry has led to significant developments, particularly in

understanding derived categories of coherent sheaves and their role in mirror symmetry [3].

In this paper, we propose a categorical framework for non-commutative motives, using triangulated and derived categories to capture the essence of non-commutative spaces. Our approach aims to bridge the gap between classical motives and their non-commutative counterparts, offering new perspectives and tools for both areas.

1.1 Motivation and Overview

The study of motives provides a unifying language for various cohomological and homological invariants in algebraic geometry. Extending this concept to non-commutative spaces opens up possibilities for:

- Understanding Non-Commutative Spaces: Developing invariants that classify and distinguish non-commutative spaces.
- Connecting Different Areas: Linking non-commutative geometry, category theory, and algebraic topology.
- Advancing Theoretical Frameworks: Providing a foundation for future research in areas such as non-commutative Hodge theory and motivic homotopy theory.

Our main contributions include:

- Introducing a categorical definition of non-commutative motives via derived categories.
- Establishing functorial relationships between non-commutative motives and classical motives.
- Providing examples and applications that illustrate the utility of our framework.

1.2 Organization of the Paper

The paper is structured as follows:

- Section 2 reviews essential background on motives, derived categories, and non-commutative geometry.
- Section 3 introduces the categorical framework for non-commutative motives.
- Section 4 discusses functorial properties and relationships with classical motives.
- Section 5 presents detailed examples and applications of the theory.
- Section 6 explores potential extensions and open problems.

Article Received:25 July 2023 Revised:12 September 2023 Accepted:30 October 2023)

2 Preliminaries

2.1 Classical Motives

Motives are envisioned as the "universal cohomology theory" for algebraic varieties. They abstract the cohomological properties of varieties into a category, where mor-phisms represent correspondences.

Definition 2.1. A *p ure m otive* over a fi eld *k* is a triple (X, p, n), where *X* is a smooth projective variety over k, p is an idempotent correspondence (i.e., $p \circ p = p$), and $n \in \mathbb{Z}$ is an integer representing a Tate twist.

The category of pure motives is constructed by formally inverting certain mor-phisms and considering equivalence relations among correspondences. This category can be enriched with additional structures, such as tensor products and duals.

2.2 Derived Categories and Triangulated Categories

Derived categories provide a framework for working with complexes of objects, cap-turing homological information in a categorical setting.

Definition 2. 2. Let $\mathscr A$ be an abelian c a tegory. The d e rived c a tegory $D(\mathscr A)$ is constructed from the category of chain complexes in $\mathscr A$ by formally inverting quasi-isomorphisms (maps inducing isomorphisms on cohomology).

Derived categories are examples of *triangulated categories*, equipped with an auto-equivalence (the shift functor) and a class of distinguished triangles satisfying specific axioms [4].

2.3 Non-Commutative Spaces and Their Categories

In non-commutative geometry, one studies non-commutative algebras as if they were rings of functions on hypothetical "non-commutative spaces."

Definition 2.3. A *non-commutative space* is an associative (possibly non-commutative) algebra A, considered as a stand-in for the space Spec(A).

Associated to A are categories such as the category of (left) modules A-Mod and the derived category D(A) of complexes of A-modules.

2.4 Enhancements and Differential Graded Categories

To handle homotopical and higher-categorical structures, we often work with differen-tial graded (DG) categories.

Definition 2 . 4. A D G c a $tegory <math>\mathscr{C}$ o v er a fi eld k is a cate gory en ri ched over complexes of k-vector spaces. That is, for any two objects $x,y \in \mathscr{C}$, the morphism space $Hom_{\mathscr{C}}(x,y)$ is a complex of k-vector spaces.

DG categories allow us to keep track of higher morphisms and homotopies, which is essential in derived and triangulated settings.

Article Received:25 July 2023 Revised:12 September 2023 Accepted:30 October 2023)

3 Non-Commutative Motives

3.1 Definition of Non-Commutative Motives

We propose to define non-commutative motives using triangulated categories associated with non-commutative spaces.

Definition 3.1. Let A be a non-commutative algebra over a field k. The *non-commutative motive* of A, denoted $M_{nc}(A)$, is the class of A in an appropriate triangulated category of non-commutative motives \mathcal{M}_{nc} .

The category \mathcal{M}_{nc} is constructed by considering DG categories up to Morita equivalence and localizing with respect to quasi-equivalences.

3.2 Construction of the Category \mathcal{M}_{nc}

We outline the construction of \mathcal{M}_{nc} :

- 1. Consider the category of small DG categories over *k*.
- 2. Define morphisms as DG functors, with quasi-functors considered as equivalences.
- 3. Localize the category with respect to Morita equivalences (i.e., DG functors inducing equivalences of derived categories of modules).
- 4. Formally invert these equivalences to obtain the triangulated category \mathcal{M}_{nc} .

Remark 3.2. This construction mirrors the formation of the classical category of motives, where correspondences are used to define morphisms between varieties.

3.3 Properties of Non-Commutative Motives

Non-commutative motives inherit several properties from the underlying DG categories:

- Additivity: Direct sums in the category correspond to "motivic" direct sums.
- **Tensor Structure**: There is a monoidal structure induced by the tensor product of DG categories.
- Homological Invariants: Cohomological functors from \mathcal{M}_{nc} recover invariants like Hochschild homology and K-theory.

3.4 Comparison with Classical Motives

While classical motives are built from algebraic varieties, non-commutative motives arise from algebras and their module categories. However, there are bridges between the two:

Theorem 3.3. For a smooth projective variety X, there is a correspondence between its classical motive M(X) and the non-commutative motive $M_{nc}(D^b(Coh(X)))$, where $D^b(Coh(X))$ is the bounded derived category of coherent sheaves on X.

Proof. The derived category $D^b(\operatorname{Coh}(X))$ captures much of the geometry of X. Under certain conditions, there exist fully faithful functors relating M(X) and $M_{\operatorname{nc}}(D^b(\operatorname{Coh}(X)))$. The precise correspondence is established via Hochschild homology and cyclic homology theories.

4 Functoriality and Relations with Classical Motives

4.1 Functoriality of Non-Commutative Motives

Morphisms between non-commutative algebras induce morphisms between their motives.

Definition 4.1. A *DG functor F* : $\mathscr{A} \to \mathscr{B}$ between DG categories induces a morphism $M_{\rm nc}(F): M_{\rm nc}(\mathscr{A}) \to M_{\rm nc}(\mathscr{B})$ in $\mathscr{M}_{\rm nc}$.

This functoriality allows us to track how algebra homomorphisms affect the associated motives.

4.2 Tensor Products and Duals

The monoidal structure on \mathcal{M}_{nc} provides a tensor product of motives.

Definition 4.2. Given non-commutative motives $M_{\rm nc}(\mathscr{A})$ and $M_{\rm nc}(\mathscr{B})$, their tensor product is defined as:

$$M_{\mathrm{nc}}(\mathscr{A}) \otimes M_{\mathrm{nc}}(\mathscr{B}) = M_{\mathrm{nc}}(\mathscr{A} \otimes^{\mathbb{L}} \mathscr{B}),$$

where $\otimes^{\mathbb{L}}$ denotes the derived tensor product.

Proposition 4.3. The category \mathcal{M}_{nc} is a symmetric monoidal triangulated category with respect to the tensor product.

Proof. The tensor product is associative, commutative (up to isomorphism), and has a unit object. The triangulated structure is compatible with the monoidal structure, satisfying the required axioms.

ISSN: 2321-8169 Volume: 11 Issue: 11

Article Received:25 July 2023 Revised:12 September 2023 Accepted:30 October 2023)

4.3 Relation to Hochschild and Cyclic Homology

Hochschild and cyclic homology are important invariants for non-commutative algebras.

Theorem 4.4. There exists a homological functor $HH: \mathcal{M}_{nc} \to D(k)$, mapping a non-commutative motive $M_{nc}(\mathscr{A})$ to its Hochschild homology complex $HH_*(\mathscr{A})$.

Proof. The functoriality of Hochschild homology with respect to DG functors allows us to define HH on \mathcal{M}_{nc} . The composition of morphisms is preserved, making HH a well-defined functor.

4.4 Comparison with *K*-Theory

Similarly, non-commutative motives relate to algebraic *K*-theory.

Theorem 4.5. There is a contravariant functor $K: \mathcal{M}_{nc} \to Spectra$, associating to each motive its K-theory spectrum.

Proof. Algebraic K-theory is contravariantly functorial with respect to exact functors between triangulated categories. By composing with the morphisms in \mathcal{M}_{nc} , we obtain the desired functor.

5 Examples and Applications

5.1 Finite-Dimensional Algebras

Consider a finite-dimensional associative algebra A over a field k.

Example 5.1. Let $A = k[x]/(x^n)$, the truncated polynomial algebra. Its derived category D(A) encapsulates the structure of A-modules.

The non-commutative motive $M_{\rm nc}(A)$ provides invariants that classify A up to Morita equivalence. For instance, its Hochschild homology $HH_*(A)$ can be computed explicitly, revealing information about the extensions and relations within A.

5.2 Smooth Proper DG Algebras

Smooth and proper DG algebras are the non-commutative analogs of smooth projective varieties.

Definition 5 .2. A DG algebra \mathscr{A} is *smooth* if \mathscr{A} is perfect as a bimodule over itself, and *proper* if $\sum_n \dim H^n(\mathscr{A}) < \infty$.

Example 5.3. Let X be a smooth projective variety over k, and let $\mathscr{A} = D^b(\operatorname{Coh}(X))$. Then \mathscr{A} is a smooth proper DG category, and its non-commutative motive $M_{\operatorname{nc}}(\mathscr{A})$ corresponds to the classical motive of X.

This allows us to study *X* using non-commutative techniques, potentially simplifying computations or revealing new properties.

Article Received:25 July 2023 Revised:12 September 2023 Accepted:30 October 2023)

5.3 Non-Commutative Resolutions of Singularities

In situations where a variety X has singularities, we can consider non-commutative resolutions.

Definition 5 .4. A *non-commutative resolution* of a singular variety X is a smooth DG category \mathscr{A} equipped with a DG functor $\mathscr{A} \to D^b_{\operatorname{sing}}(X)$, where $D^b_{\operatorname{sing}}(X)$ is the singularity category of X.

Example 5.5. Let X be a variety with a rational singularity. A non-commutative resolution \mathscr{A} provides a way to "smooth out" X in the categorical sense. The motive $M_{\text{nc}}(\mathscr{A})$ captures information that may be inaccessible through classical resolutions.

This approach has applications in representation theory and the study of Calabi-Yau algebras.

5.4 Application to Mirror Symmetry

Non-commutative motives can play a role in homological mirror symmetry.

Theorem 5.6 (Kontsevich's Homological Mirror Symmetry). For a Calabi-Yau manifold X, there is an equivalence between the derived category $D^b(Coh(X))$ and the Fukaya category $\mathscr{F}(X^{\vee})$ of the mirror manifold X^{\vee} .

Proof. While a full proof is beyond the scope of this paper, the key idea is that the categories $D^b(\operatorname{Coh}(X))$ and $\mathscr{F}(X^\vee)$ share the same non-commutative motive in an appropriate sense. By studying their motives, we can establish equivalences between their structures.

Non-commutative motives provide a framework for comparing these categories at a motivic level, potentially simplifying the analysis required for homological mirror symmetry.

6 Future Directions and Open Problems

6.1 Non-Commutative Hodge Theory

Developing a Hodge theory for non-commutative motives could extend classical Hodge theoretic techniques to new settings.

6.1.1 problem

Define and study a notion of Hodge structures on non-commutative motives, investigating how they relate to classical Hodge structures on varieties.

6.2 Motivic Homotopy Theory in the Non-Commutative Setting

Extending Voevodsky's motivic homotopy theory to non-commutative spaces may provide new tools for studying their properties.

6.2.1 problem

Develop a motivic homotopy category for non-commutative motives, defining appropriate analogs of \mathbb{A}^1 -homotopy and motivic spheres.

6.3 Relation to Non-Commutative Algebraic Topology

Exploring connections between non-commutative motives and algebraic topology could lead to novel insights.

6.3.1 problem

Investigate how non-commutative motives interact with topological *K*-theory and other topological invariants, potentially uncovering new dualities or correspondences.

6.4 Applications in Mathematical Physics

Non-commutative motives may have implications in areas such as quantum field theory and string theory.

6.4.1 problem

Study the role of non-commutative motives in the categorification of physical theories, examining how they might model spaces in non-commutative quantum geometry.

7 Conclusion

We have introduced a categorical framework for non-commutative motives, linking derived categories of non-commutative spaces to motivic concepts in algebraic geometry. This approach opens up new avenues for research, providing tools to study non-commutative algebras and their associated categories through the lens of motives.

Our work lays the foundation for further exploration into non-commutative Hodge theory, motivic homotopy theory, and potential applications in mathematical physics. By bridging classical and non-commutative geometry, we hope to foster a deeper understanding of the structures underlying modern mathematics.

References

- [1] Grothendieck, A.: *Standard Conjectures on Algebraic Cycles*. In: Algebraic Geometry, Bombay Colloquium (1968), pp. 193–199.
- [2] Connes, A.: Noncommutative Geometry. Academic Press (1994).
- [3] Bondal, A., Kapranov, M.: *Enhanced Triangulated Categories*. Matematicheskie Zametki, **70**(1) (2001), 34–44.

[4] Verdier, J.-L.: *Des Catégories Dérivées des Catégories Abéliennes*. Astérisque **239** (1996).

- [5] Kontsevich, M.: *Homological Algebra of Mirror Symmetry*. In: Proceedings of the International Congress of Mathematicians (1994), pp. 120–139.
- [6] Keller, B.: *On Differential Graded Categories*. In: International Congress of Mathematicians (2006), pp. 151–190.
- [7] Tabuada, G.: *Invariants Additifs de DG-Catégories*. International Mathematics Research Notices **2005**(53) (2005), 3309–3339.
- [8] Cisinski, D.-C., Tabuada, G.: *Non-Connective K-Theory via Universal Invariants*. Compositio Mathematica **147**(4) (2011), 1281–1320.