
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 5680
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Evaluation of Coverage Metrics for Assessing Test

Suite Effectiveness in RISC-V Core Verification

Harinagarjun Chippagi, Dr. V. Sumalatha

 Abstract— RISC-V is a popular open-source Instruction Set Architecture (ISA) that is gaining widespread adoption in the

industry. The verification of a RISC-V core involves a rigorous testing process to ensure that it meets the functional

requirements of the ISA. To validate the test suite of a RISC-V core verification, the following coverage metrics can be used:

1. Instruction Coverage: This metric measures the percentage of instructions in the RISC-V ISA that are exercised during the

verification process. It ensures that all instructions are tested and validated, and there are no instruction-level bugs in the design.

2. Functional Coverage: This metric captures the functional requirements of the RISC-V ISA and ensures that all functionality

of the core is validated. It is defined in terms of a set of properties that must be tested during the verification process.

3. Code Coverage: This metric measures the percentage of code that is executed during the verification process. It includes

both the instructions that are executed and the code paths that are covered.

4. Assertion Coverage: This metric measures the percentage of assertions in the design that are exercised during the verification

process. It ensures that all assertions are tested and validated, and there are no design-level bugs in the RISC-V core.

By using these coverage metrics, the verification team can ensure that the test suite for the RISC-V core verification is

comprehensive and thorough, and all functional requirements are met.

Keywords— RISC-V, verification, test suite, coverage metrics, functional coverage, code coverage, assertion coverage,

instruction coverage

I. INTRODUCTION

The RISC-V is a free and open-source Instruction Set
Architecture (ISA) that is designed to be simple, modular, and
scalable. The RISC-V ISA has gained significant attention in
recent years due to its open-source nature, flexibility, and ease
of use. The RISC-V core verification is an essential aspect of
ensuring precision of the RISC-V core design. The
verification of RISC-V cores is a challenging task due to the
complexity and diversity of these cores. A RISC-V core
consists of several modules, including the instruction fetch
unit, instruction decode unit, register file, and execution units.
The verification of these modules and their interactions
requires a comprehensive test suite that covers all possible
scenarios that can be used to test the RISC-V core's
functionality, performance, and compliance with the RISC-V
ISA specifications. The test suite must include both positive
and negative scenarios to confirm that the core is functioning
as expected.

II. SIGNIFICANCE OF COVERAGE METRICS FOR RISC-V CORE

A. Instruction Coverage

Instruction coverage measures the extent to which the test
suite exercises different instructions of the RISC-V core.
Instruction coverage is measured as a percentage of the
instructions in the ISA that were executed during testing. It
ensures that all instructions are tested and validated, and there
are no instruction-level bugs in the design.

B. Functional Coverage

Functional coverage measures the percentage of
functional scenarios that were tested during the RISC-V core
verification process. This coverage metric confirms that the
RISC-V core is functioning correctly and can handle all
possible scenarios. It is defined as a set of functional coverage
points that need to be covered by the test suite. These coverage
points are defined based on the RISC-V ISA specification and
the design of the RISC-V core.

C. Code Coverage

Code coverage is a metric that helps in understanding how
much of the RISC-V core design is tested. It is a useful metric
that helps to assess the quality of the RISC-V test suite. Code
coverage tools will use one or more criteria to determine how
the code was exercised during the execution of the test suite.
The common metrics that are mentioned in coverage reports
include:

• Block Coverage: A code block is a sequence of one
or more statements. Block coverage provides
information about how well a test suite exercises the
individual blocks of code in the RISC-V core,
helping to identify areas that are not tested and may
contain bugs.

• Branch Coverage: It yields more precise coverage
details than block coverage by obtaining coverage
results for various branches in the RISC-V core
individually. With branch coverage, a piece of design

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 5681
IJRITCC | September 2023, Available @ http://www.ijritcc.org

code is considered 100% covered when each branch
of a conditional statement is executed at least once.

• Statement Coverage: It describes the number of
executed statements in the core.

• Expression Coverage: It measures coverage statistics
for logical expressions.

• Toggle Coverage: It describes design activity in
terms of changes in signal values.

• Finite State Machine Coverage: It measures the
number of FSM states that are exercised and the
number of state transitions that occurred during the
RISC-V core verification.

D. Assertion Coverage

 Assertion coverage is a software testing metric that
measures the effectiveness of the assertions used in a program.
Assertions are statements that are added to a program to check
if certain conditions hold true at a particular point in the
program's execution. It is used to determine the number of
these assertions that were executed during testing. The main
goal of assertion coverage is to ensure that all assertions in the
code are executed at least once during the testing process. This
is important because assertions help identify bugs and other
issues in the code, and their execution during testing confirms
that these issues are detected and fixed before the code is
released. Assertion coverage is measured as a percentage of
the total number of assertions in the code that were executed
during testing. This metric can help software testers and
developers identify areas of the code that require additional
testing and find assertions that are not executed and may need
to be updated or removed.

III. IMPLEMENTATION AND RESULTS

A. Verification Plan for Coverage Metrics

 To define the verification plan for the RISC-V processor

core, set goals that were clear, specific, measurable, and

aligned with the overall project goals. Identified the coverage

metrics that will be used to measure the progress of

verification. Selected the coverage metrics based on the goals

of verification and relevant to the design being verified.

Metrics identified for a RISC-V processor core are

Instruction coverage, Functional coverage, Code Coverage,

Assertion coverage. After identifying the coverage metrics,
define the coverage plan to specify the target coverage levels

for each metric, which will be achieved through a

combination of directed tests, random tests, and corner-case

tests. Implemented the defined coverage plan, which involves

writing test cases, creating a test bench, and running

simulations. Tracked progress of verification using the

coverage metrics defined in the coverage plan. After

completing the simulations, the coverage results were

analyzed to check whether the verification goals were met. If

the coverage levels are below the target levels, then additional

tests are created and run to increase coverage. In the end,

coverage metrics and targets are adjusted based on the results
of the analysis, and new verification methods are added to

achieve the desired coverage levels.

1) Instruction Coverage
 To measure instruction coverage, a test suite

comprising a set of programs that exercise all instructions in
the RISC-V ISA, was developed. These programs have the
instruction name that is executed, which will be given as input
to a function. Later, the respective input will be compared with
the string array which has instruction names for that specific
register mode and a cover group was defined to cover these
bins.

Fig. 1. Coverage for Register-Register Type Instructions

2) Functional Coverage

 To analyse the functional coverage metrics for
RISC-V core, the functional coverage plan was prepared in
such a way that it covers all the nook and corner cases for each
instruction depending on the instruction format,considering
the following cover groups for validating the coverage:

• Cover group for operand selection from the General-
Purpose Registers (GPRs): This checks whether the
operands were assigned with every possible general-
purpose register that is available in the RISC-V core.
This was achieved by assigning GPRs to the operands
in cyclic increments so that no two operands will be
assigned with the same GPR.

• Cover group for various operand combinations: This
checks whether the test suite exercised all possible
register combinations. As there are three operands, all
possible permutations and combinations around those
operands were considered.

• Cover group for all possible operand values: This
checks whether the operand was assigned with all
possible values like extreme positive, positive, zero,
negative, extreme negative. This was achieved by
randomizing the positive and negative values in the
given range from 0 to most positive value and most
negative value to –1 respectively.

The above scenarios were mentioned in different cover groups
to simplify understanding in the final coverage report. The
instructions were also segregated depending on their register
modes, to help in reducing the complexity of the code.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 5682
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fig. 2: Functional Coverage for Register-Register Type
Instructions

3) Code Coverage

 To obtain coverage analysis, Cadence xcelium tool
specific commands were used to generate the coverage report,
which is available in Integrated Metrics Centre (IMC). This
coverage report provides the code coverage, block coverage,
branch coverage, statement coverage, expression coverage,
toggle coverage and FSM coverage. A coverage file which
represents coverage configuration, was created for the design
with .ccf extension, where the condition can be set or enable
coverage through commands that are by default in disabled
condition. To improve the coverage up to 100%, analyze the
coverage post simulation and identify the lines which were not
executed. Include the test vectors in test bench to
trigger/execute those missing statements. This is how the test
bench is improved and code coverage closure is achieved.

Fig. 3: Percentage of Metrics covered for Code Coverage

4) Assertion Coverage

 Ddeveloped an assertion plan which is RISC-V
complaint. As per the RISC-V specification manuals, the plan
was categorized into two parts, one for 32 GPRs and the other
for Control and Status Registers (CSRs). For GPRs, the
instructions with similar opcodes are categorized. Once the
instruction's opcode is known, then the code will

automatically pick register values for source and destination
registers according to the cases written. Once this is done,
check function 3 and function 7 values, to know the distinct
instruction name. Once the code runs, it goes through all cases
and picks the instruction, checks for the assert statement
which is written based on instruction's behavior. Check if the
destination register has been updated with the desired value
after operation on the source registers. Later, according to the
instructions, a property must be checked for all instructions.
This includes whether the PC value has been changed and
instruction signal has the opcode value of respective
instruction. As per the instruction signal, at the positive edge
of clock, the destination register must reflect the values
properly and display PASS/FAIL statement. For CSRs, most
of them have a constant value which must remain same
throughout the simulation and the assert statements will fail if
the signal fails to be stable.

Fig.4. Categorization of Assertion Plan

Fig. 5. Terminal Output showing Assertion Pass/Fail criteria

IV. CONCLUSION

The verification of RISC-V cores is a critical process that
ensures the correctness and functionality of these cores. The
test suite used for verification must be comprehensive and
cover all possible scenarios that the core can encounter.
Coverage metrics are used to evaluate the completeness of the
test suite and determine areas that need improvement. The

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 5683
IJRITCC | September 2023, Available @ http://www.ijritcc.org

coverage metrics discussed in this paper, including instruction
coverage, functional coverage, code coverage, and assertion
coverage, can be used to validate the test suite of a RISC-V
core verification. By using these coverage metrics, the
verification process can be improved, and the quality of RISC-
V cores can be ensured.

REFERENCES

[1] A. Waterman and K. Asanovic, "The RISC-V Instruction

Set Manual; Volume I: Unprivileged ISA", SiFive Inc.

and CS Division, EECS Department, University of

California, Berkeley, 2019.

[2] Integrated Metrics Centre User Guide 23.03

[3] Integrated Coverage User Guide 23.03 A. Waterman

and K. Asanovic, "The RISC-V Instruction Set Manual;

Volume I: Unprivileged ISA", SiFive Inc. and CS

Division, EECS Department, University of California,

Berkeley, 2019.

[4] A. Waterman and K. Asanovic, "The RISC-V

Instruction Set Manual; Volume II: Privileged

Architecture", SiFive Inc. and CS Division, EECS

Department, University of California, Berkeley, 2021.

[5] J. Hennessy and D. Patterson, "Computer Architecture:

A Quantitative Approach", 6th Edition, Morgan

Kaufmann, 2017.

[6] S. Sutherland, D. Mills, and C. Spear, "SystemVerilog

for Verification: A Guide to Learning the Testbench

Language Features", 3rd Edition, Springer, 2012.

[7] M. Keating, "The Simple Art of SoC Design: Closing

the Gap between RTL and ESL", Springer, 2011.

[8] C. Spear and G. Tumbush, "SystemVerilog for

Verification: A Guide to Learning the Testbench

Language Features", 2nd Edition, Springer, 2008.

[9] A. Mehta, "Comprehensive Functional Verification:

The Complete Industry Cycle", Morgan Kaufmann,

2008.

[10] J. Bergeron, "Writing Testbenches: Functional

Verification of HDL Models", 2nd Edition, Springer,

2003.

[11] S. Palnitkar, "Verilog HDL: A Guide to Digital Design

and Synthesis", 2nd Edition, Prentice Hall, 2003.

[12] IEEE Standard for SystemVerilog—Unified

Hardware Design, Specification, and Verification

Language, IEEE Std 1800-2017, 2017.

Harinagarjun Chippagi is a Senior Design Verification Lead with over 15 years of experience in VLSI

design verification. He is currently pursuing his Ph.D. in Digital IC Design & Verification Methodologies

at Jawaharlal Nehru Technological University, Anantapur, focusing on re-usable UVM-based complex

SoC verification. His expertise spans System Verilog, UVM, and FPGA/ASIC verification, with

significant experience in emulating complex SoC designs using Mentor Veloce platforms. Mr.

Harinagarjun Chippagi has led various high-profile projects, including IP & SoC verification complex

micro Controllers and Network on Chip (NoC) verification systems. He holds an M.Tech in Digital

Systems & Computer Electronics and has earned multiple certifications in functional verification

methodologies. His research interests include hardware-software co-verification, rapid prototyping, and

advanced verification methodologies for complex semiconductor designs.

 E-mail :arjunpartha99@gmail.com , harinagarjun.chippagi@ieee.org

Dr. V. Sumalatha is a distinguished Professor of Electronics and Communication Engineering (ECE) and

the Director of Industrial Relations & Placements at Jawaharlal Nehru Technological University

Anantapur (JNTUA), Andhra Pradesh, India. With a Ph.D. in Wireless Networks from JNTU Anantapur

, she has over two decades of academic and administrative experience. She has held various leadership

roles, including Head of the ECE Department, Coordinator for Academic & Planning, and Training and

Placement Officer. Dr. Sumalatha has also served as the University Nodal Officer for MHRD’s All India

Survey of Higher Education (AISHE) and as the Program Coordinator for the JNTUA-Texas Instruments

University Program. Her expertise spans wireless networks, digital systems, and computer electronics,

and she has significantly contributed to enhancing industrial relations and student placements at JNTUA.

A dedicated academician, she continues to play a pivotal role in shaping the educational and professional

landscape of the institution.

 E-mail : sumaatp@yahoo.com , vsumalatha.ece@jntua.ac.in

http://www.ijritcc.org/
mailto:harinagarjun.chippagi@ieee.org

