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Abstract 

Turing tokens into fiat money are truly ushering a new era in monetary systems. The trading of tokenised securities, 

commodities, real estate, and other assets is often conducted over decentralised networks with highly linked transactional 

structures. The temporal and relational complexities ingrained into such systems evade representation by traditional asset 

pricing methods. To overcome this challenge, this work presents a new tokenised-asset-pricing framework that exploits the 

interdependencies and topological structure of blockchain transactions and is based on Graph Neural Networks (GNNs). 

We use a dynamic graph model to describe tokenised assets and their interactions, where nodes may represent tokens or 

wallets, and edges may represent interactions between smart contracts, co-ownership agreements, or transactional 

connections. To capture market dynamics, understand liquidity flows, and discern asset correlations over time, our 

proposed system learns expressive node embeddings by applying GNN architectures such as GCNs and GATs. Building 

upon these methods, temporal graph models are considered to accommodate the changing market environment and 

transaction profiles. The GNN pricing model proposed is tested on real-world datasets collected from Ethereum-based DeFi 

platforms and compared with baseline ML models and traditional pricing models. The results point to significantly 

improved predictive accuracy, resistance to market volatility, and adjustment to different token architectures. This study 

exemplifies how graph-based deep learning techniques could replace traditional models for digital asset appraisal by one 

that is more accurate and more scalable. It also sheds light on price discovery in decentralised setups, detection of market 

manipulation, and contagion of risks. 

Keywords: Tokenized Assets, Graph Neural Networks, Asset Pricing, Blockchain Analytics, Decentralized Finance (DeFi) 

1.Introduction 

The tokenisation of assets has ushered in a paradigm for 

creating, exchanging, and managing value in 

contemporary financial systems. Real estate, stocks, 

bonds, intellectual property, or any other asset of a 

physical or digitally native nature may be "tokenised" 

into digital tokens to be used on blockchain networks. 

Fractionalisation, instant trading, and smart contract 

programming provide avenues for either liquidity, 

transparency, or accessibility for those tokens. 

Particularly in the DeFi area, blockchain-based platforms 

empower financial services to lend, borrow, stake, and 

develop synthetic assets without traditional 

intermediaries [1]. 

The quick expansion and variety of tokenised markets, 

particularly in asset pricing, nevertheless present fresh 
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challenges. Unlike traditional financial markets that 

depend on centralised data and fixed risk-return 

projections for pricing algorithms, tokenised ecosystems 

are very dynamic and non-linear. Further confirming 

their link, tokens in these ecosystems often share 

governance structures, liquidity pools, and applications. 

Trying to infer the information flow and influence inside 

these networks from transactional or tabular data on their 

own becomes less effective with traditional pricing 

models such the Capital Asset Pricing Model (CAPM), 

Black-Scholes, or Arbitrage Pricing Theory (APT). 

Graph Neural Networks for Pricing Tokenized Assets 

By using Graph Neural Networks (GNNs), a response to 

the flaws of conventional models, this paper offers a 

fresh way of modelling and forecasting tokenized asset 

values. GNNs—a group of machine learning 

algorithms—are ideal for data analysis in blockchain 

ecosystems, where entities and their interactions generate 

complicated networks, since they can handle graph-

structured data. The nodes of our graph of tokenised asset 

ecosystems are tokens, users, and smart contracts; the 

edges are transactions, co-ownership, liquidity sharing, 

and governance participation [2].   Because of their 

graph-based representation, GNNs can capture higher-

order dependencies, structural correlations, and 

contextual impacts among tokens—something that 

conventional vector-based models fall to capture. 

Furthermore, more sophisticated GNN architectures like 

GATs and GCNs may learn importance weights and 

include features from nearby nodes; this enables the 

model to grasp the manner in which specific performers 

or tokens have an outsized influence on market behaviour 

[3]. 

Additionally, the incorporation of temporal graph 

modeling techniques ensures the model adapts to the 

ever-evolving nature of DeFi markets, where token 

interactions and user behaviors change rapidly. By 

combining structural learning with time-series dynamics, 

GNNs can deliver highly accurate, explainable, and 

resilient pricing predictions. 

Through the use of a thorough and systematic 

methodology, the following issues with financial 

knowledge graph building and financial performance 

prediction are addressed by the suggested technique, 

FintechKG [4]: 

FintechKG extracts the taxonomy of financial notions 

from a variety of financial documents, including income 

statements, balance sheets, and cash flow statements, 

which leads to enhanced domain knowledge. Financial 

ideas and entity connections may be fully grasped with 

the help of this enhanced domain knowledge. 

• Information Integration That Works: The suggested 

method takes use of textual knowledge as well as 

relational information contained in the knowledge graph 

by combining textual embeddings (FinBERT) [5] with 

graph-based embeddings (RGCN). Merging the two 

embeddings into a common latent space improves the 

precision of performance forecasts for financial entities. 

• Learning Patterns Over Time: An LSTM (Long Short-

Term Memory) model captures trends and temporal 

relationships in financial data by feeding it RGCN [6] 

embeddings from various time steps. Better forecasts of 

financial results are the result of this. Right now, we're 

going to show you how to forecast the future of a 

financial organization's income. Other financial 

indicators may also be predicted using the same method. 

 

2.Related work 

New intricacies to asset valuation have emerged with the 

emergence of tokenised assets, which are digital 

representations of actual or virtual assets on blockchain 

systems. For quite some time, more traditional models 

like Black-Scholes, APT, and CAPM have been used to 

deduce asset price projections. Centralised data, linear 

risk correlations, and market efficiency are some of the 

assumptions upon which these models rely. However, 

these models fail in DeFi environments because to the 

non-linear and dynamic impacts on token behaviour 

caused by user interactions, contracts, and liquidity 

protocols. 

Graph Neural Networks (GNNs) [7] provide a viable 

alternative by simulating the blockchain network's 

structure and the interactions between nodes. In a GNN-

based system, nodes may represent tokens or wallets, and 

edges can record transactions or ownership links. By 

integrating information from all of these connections, 

GNNs are able to discover hidden patterns and contextual 

elements. Their current achievements in predicting 

markets, analysing transactions, and detecting fraud can 

be useful for tokenised asset pricing. 
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2.1 Overview of Tokenization and Blockchain 

Ecosystems 

The term "tokenisation" describes the transformation of 

an asset's rights into a blockchain-based digital token. 

Property, artwork, and commodities are examples of 

physical assets that these tokens might stand for. 

Equities, bonds, and derivatives are examples of 

intangible financial instruments. By making these digital 

representations indelible, transparent, and 

programmable, the blockchain opens the door to new, 

more accessible financial products. Tokenisation paves 

the way for decentralised apps (dApps) [8] to integrate 

seamlessly, automatic settlement via smart contracts, 

fractional ownership, and trading around the clock. 

Ethereum, Binance Smart Chain, Solana, and Polygon 

are all part of the larger blockchain ecosystem; they all 

facilitate the issuance and redemption of tokenised 

assets. Decentralised Finance (DeFi) is essential to this 

ecosystem because it removes middlemen from activities 

like staking, derivatives trading, yield farming, and peer-

to-peer lending. A complicated and interdependent data 

structure is formed as a result of the interactions between 

all nodes in the network, which may be either tokens, 

smart contracts, or wallets. Because value in blockchain 

ecosystems is affected by peer interactions, liquidity 

requirements, and governance involvement, it is crucial 

to understand its networked structure in order to evaluate 

tokenised assets. Graph Neural Networks and other 

network-based methods are being used to predict asset 

price and behaviour in this decentralised setting because 

of the graph-like structure of blockchain transactions. 

2.2 Traditional Asset Pricing Models: CAPM, APT, 

Black-Scholes 

Although they are the backbone of financial theory, 

traditional asset pricing models don't work well in 

decentralised settings. According to the Capital Asset 

Pricing Model (CAPM), a security's beta—a measure of 

its systematic risk—is directly proportionate to its 

anticipated return. Further, APT considers a number of 

macroeconomic variables that impact asset performance. 

The linear linkages and market equilibrium that these 

models rely on are often challenged in the very 

unpredictable and dispersed cryptocurrency 

marketplaces. Assumptions of log-normal distribution of 

prices, continuous volatility [9], and frictionless markets 

form the basis of the Black-Scholes model, which is 

extensively used for options pricing. On regulated 

exchanges, these presumptions could be correct, but in 

tokenised ecosystems, issues with smart contracts, 

fragmented liquidity, and price manipulation are more 

prevalent. Furthermore, conventional models are not 

dynamic, depend on centralised information, and fail to 

represent behavioural or network-level changes 

occurring in real-time. Thousands of smart contracts and 

wallets interact in complicated, non-linear ways to affect 

asset values in decentralised finance. To address these 

limitations, we need more modern pricing models that 

make use of graph-based deep learning to model non-

Euclidean connections, adjust to dynamic data, and 

include contextual cues. 

2.3 Graph Neural Networks in Financial Applications 

The use of graph-structured data for learning has been 

greatly enhanced with the advent of Graph Neural 

Networks (GNNs). Fraud detection, credit scoring, 

transaction monitoring, and portfolio optimisation are 

some of the growing areas where GNNs are being used 

in the financial sector. Their power is in the fact that, 

unlike conventional models, they can detect underlying 

structural patterns and relational relationships in data. 

People, assets, and contracts are examples of nodes in a 

GNN, whereas transactions, correlations, and co-

ownership are examples of edges. By integrating and 

adjusting input from neighbouring nodes, Global Neural 

Networks (GNNs) provide contextually rich 

embeddings. Improved learning in imbalanced or noisy 

networks via selecting important neighbours is a feature 

of some versions, such GATs and Graph Convolutional 

Networks (GCNs). Tokenised asset pricing allows for the 

analysis of blockchain transaction graphs using GNNs. 

Here, the interconnections between assets—such as 

common liquidity pools, ownership overlap, or frequent 

co-trading—influence the asset's behaviour. It is crucial 

to have GNN models that can manage different sorts of 

interactions throughout time since these networks are 

constantly changing and are quite heterogeneous. 

Research has shown that GNNs outperform traditional 

models in decentralised contexts when it comes to 

capturing systemic risk, predicting asset volatility, and 

identifying market manipulation. Their compatibility 

with blockchain ecosystems' inherent decentralisation 

makes them a promising option for building data-

efficient, interpretable, and flexible pricing models. 
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3. The Proposed Architecture 

Here we detail the methodology that went into building 

the FintechKG (Fintech knowledge graph) that can 

forecast Financial Entities. You can see the process of the 

FintechKG Information Extract and Predictions Process 

in Figure 1. 

Here are the components that make up this structure: 

FintechKG information is represented using Relational 

Graph Convolutional Networks (RGCNs) at different 

dates in order to capture relationship data. 

Using pre-trained FinBERT, we may include textual data 

and extract semantic inferences from news about finance. 

• LSTM-Based Temporal Reasoning: Use of Long Short-

Term Memory (LSTM) systems to express RGCN 

connections across time. 

To facilitate successful integration (e.g., linear or non-

linear) into a single latent space for forecasting, an 

extension layer is included within both RGCN  and 

FinBERT.  

 

Figure 1: FintechKG knowledge graph extraction 

pipeline 

3.1 Graph Representation of Tokenized Asset 

Networks 

Tokenized asset ecosystems on blockchain platforms 

naturally form graph-structured data environments. In 

these networks, assets, users, and smart contracts are 

interlinked through interactions such as transactions, 

staking, co-ownership, and liquidity provision. Modeling 

these environments as graphs allows for the exploration 

of structural and temporal dependencies that influence 

asset behavior. Each graph  G=(V,E) consists of nodes  

V, representing entities such as tokens or addresses, and 

edges E, denoting interactions like token transfers, 

liquidity pool connections, or governance actions. 

Nodes and edges in this graph-based depiction may come 

and vanish at any moment, mirroring the ever-changing 

nature of the market and the network. Because tokenised 

assets are interdependent, it is critical to capture their 

embeddedness inside these networks. The use of graph 

representations allows for a more sophisticated price 

model by revealing systemic trends, clusters of related 

tokens, trading ecosystem influences [9], and possible 

manipulation spots.  

3.2 Tokens, Wallets, and Transactions: Node and 

Edge Definitions  

It is essential to define the responsibilities of nodes and 

edges in building the tokenised asset network. In most 

cases, nodes stand in for user addresses, smart contracts, 

or tokens. Metadata related to each node might include 

things like the kind of token, trading volume, wallet 

balance, contract functionality, and user categorisation 

(e.g., retail vs. institutional). If two wallets have an edge, 

it means that tokens are being transferred between them. 

If two tokens have an edge, it means that they are owned 

by different people. In a liquidity pool or when trading 

tokens with each other, two tokens having an advantage 

are involved. These edges could be targeted from the 

person who sends them to the receiver in a deal, or they 

might be unsecured for unbalanced relationships like co-

ownership. The financial network's connections may also 

include variables such as trade value, date, fuel fees, and 

frequency to illustrate trends in behaviour and time. 

 

3.3 GANs, GATs, and Temporal GNNs Used  

To process the graph-structured blockchain data, we use 

GNN designs, which take into account both the nodes' 

own characteristics and those of their nearby neighbours. 

By combining input from nearby nodes via weighted 

averaging, the Graph Convolutional Network (GCN) is 

able to learn from second-order connections while 

preserving spatial locality. The Graph Attention Network 

(GAT) [10] uses attention techniques to offer close nodes 

different levels of importance. This is particularly useful 

in diverse blockchain networks where various wallets or 

tokens may influence asset pricing in different ways. To 

address the time-sensitive aspect of blockchain networks, 

we use Temporal GNNs. These networks are capable of 
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handling continuous event streams or sequences of graph 

snapshots.  

Examples of these are Recurrent GCNs and Temporal 

Graph Networks. For dynamic price prediction and risk 

modelling in tokenised asset networks, these models 

capture shifting linkages and transaction patterns across 

time. 

 

Figure 2: There is a proposed system for estimating 

cooling capacity. Time Graph Convolutional Neural 

Networks (TGCN), graph construction, GAT, and 

temporal dependency modelling make up the four 

main components of the model. A graph is first 

constructed using input data (such as voltage, 

current, and temperature), with vertices 

representing factors and edges encoding connections. 

The GAT refines the spatial-temporal information 

extracted by the TGCN, employing a combination of 

convolution on graphs and temporal convolution, is 

for dynamic edge weighting. In the end, the capacity 

for cooling is predicted by capturing time-dependent 

variables utilising LSTM 

3.4 Feature Engineering and Input Construction 

Effective feature engineering is critical for the success of 

GNN-based tokenized asset pricing models. For nodes, 

features may include historical token prices, wallet 

balances, transaction volumes, centrality measures (e.g., 

degree, PageRank), contract types, and token metadata 

such as market cap or supply. These features help capture 

both the economic characteristics and the network 

influence of the entities involved. Edge features often 

include transaction frequency, value transferred, gas 

cost, and time intervals. Temporal features, such as time 

since last interaction or volatility over time, are vital for 

models addressing dynamic market conditions. Input 

construction involves creating a sequence of graph 

snapshots or event-based dynamic graphs. Each graph 

must be encoded with feature matrices for nodes and 

edges, adjacency matrices representing the topology, and 

labels such as current or future token prices. Feature 

normalization, dimensionality reduction (e.g., PCA), and 

embedding techniques (e.g., Node2Vec) [11] may be 

applied to improve learning efficiency and model 

convergence. Together, these engineered inputs feed into 

GNNs for training robust, interpretable pricing models. 

4. FintechKG's Construction 

Conceptual Entities, Economic Entities, and Relations 

are extracted from textual data in a methodical way by 

the pipeline of processes. Sentences or paragraphs of text 

make up the pipeline's input. Removal of words that end 

and wrong characters is part of the pre-processing that 

the text goes through. When the text is ready to be 

analysed it is sent into the BERT NER Model, which 

stands for "Named Entity Retrieval" [12], for the 

extraction of entities. Relationships in the format of 

<subject, predicate, which object> triples may be 

extracted from textual information using a rule-based 

approach. 

In addition, we use a Scenario-Based Learning 

Extraction that integrates many extractors, including 

finances growth, money market growth, acquisition, 

contract, and finance. The appropriate financial data is 

extracted by these extractors using predefined scenarios. 

One component of the financial knowledge graph 

(FinTechKG) is the output from the ScenarioBased 

Knowledge Extractor. 

Taken together, these procedures provide an all-

encompassing method for building the FintechKG, 

which allows the retrieval and arrangement of important 

financial data into a structured knowledge graph. 

Commercial Entity (ComE), Financial or Concept Entity 

(ConE), and temporal information (TI) are the three 

aspects from which financial knowledge is retrieved in 

our technique. The important terms are defined in this 

section. 

4.1 Data Sources (e.g., Ethereum, DeFi Platforms) 

To develop a robust tokenized asset pricing model using 

Graph Neural Networks, acquiring high-quality and 

comprehensive data is essential. This study primarily 

leverages data from Ethereum, the most widely used 

blockchain for decentralized finance (DeFi) and 

tokenized asset issuance. Ethereum provides access to 

rich, on-chain transactional data, including token 

transfers, smart contract interactions, wallet balances, 
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and DeFi protocol activities such as staking, lending, and 

liquidity provision. 

Key data sources include the Ethereum blockchain ledger 

(accessed via services like Infura, Alchemy, or directly 

through Ethereum nodes), ERC-20  [13] token standards, 

and DeFi protocols like Uniswap, Aave, Compound, and 

Curve. These platforms enable interactions between 

tokens and users that form the foundational graph 

structure required for model training. Additionally, data 

aggregation platforms such as Etherscan, Dune 

Analytics, The Graph Protocol, and Flipside Crypto 

provide structured APIs and dashboards for extracting 

historical transaction data, gas prices, token metadata, 

wallet activity patterns, and protocol-level analytics. For 

price labels, CoinGecko and CoinMarketCap serve as 

reliable sources for real-time and historical token prices, 

market caps, and trading volumes. 

The inclusion of both raw blockchain logs and processed 

datasets allows for flexibility in graph construction and 

feature engineering. Blockchain’s transparency ensures 

that all transaction data is verifiable and timestamped, 

enabling the creation of temporal graphs for modeling 

evolving relationships over time. The combination of on-

chain transactional data and off-chain metadata is critical 

to accurately representing the multidimensional nature of 

tokenized markets. In summary, data from Ethereum and 

associated DeFi platforms form the backbone of this 

study, offering a rich and complex dataset suited for 

GNN-based modeling. The development of a 

generalisable and scalable pricing system relies heavily 

on the careful selection and preprocessing of these 

sources. 

4.2 Building Graphs from Transaction Logs  

Parsing and converting blockchain transaction logs into 

a network topology is the first step in building a 

tokenised asset graph. Token type (for example, ERC-

20), amount, date, sender and recipient addresses, and 

details of smart contract interactions are all part of every 

Ethereum transaction. Token transfers, contract calls, 

and liquidity interactions are examples of edges, whereas 

nodes include things like wallets and contracts.To 

construct the graph, a typical pipeline involves: 

• Extracting raw transaction data from the 

Ethereum ledger or DeFi protocols. 

• Filtering transactions by token type, value 

thresholds, or application (e.g., DeFi staking, 

swaps). 

• Defining edges as directed links between 

wallet addresses with associated attributes such 

as transaction amount, gas cost, and 

timestamp. 

• Mapping node types, such as retail vs. 

institutional wallets, liquidity providers, or 

governance actors, using heuristics or 

clustering techniques. 

It is possible to enhance edge types by recording non-

transferable on-chain interactions, such as smart contract 

invocations, DeFi pool shares, and collateral based on 

NFTs. Heterogeneous networks may be used to reflect 

this multi-relational nature, which allows for more 

expressive GNN topologies. Capturing the structure of 

the tokenised ecosystem, the resultant graph reflects the 

movement of assets and the interactions of entities across 

platforms. Information on the node's centrality, balance 

history, and transaction frequency are common 

embedded elements. Data about transactions and 

timestamps may be carried by edges, which are important 

for subsequent operations such as detecting fraud or 

predicting prices.  

You may generate useful subgraphs for training by 

limiting graph generation to certain time periods, token 

categories, or people with high activity, which helps with 

scalability and efficiency management. Temporal GNNs 

are built on top of these dynamic, time-bound snapshots.  

Overall, graph construction from transaction logs 

transforms raw blockchain data into a structured format 

suitable for learning relational patterns, enabling 

predictive modeling of tokenized asset prices through 

GNNs. 

4.3 Temporal Snapshot Generation and Labeling 

In tokenized markets, interactions and asset behaviors are 

highly dynamic. Thus, capturing temporal evolution is 

critical for accurate modeling. Temporal snapshot 

generation involves dividing the continuous transaction 

stream into discrete time intervals—daily, hourly, or 

weekly—to create a sequence of graph snapshots 

representing the state of the network at different points in 

time. For each snapshot, a subgraph is constructed from 

transactions occurring within the defined time window. 

These graphs preserve the topological structure (who 

interacted with whom) and node/edge features (e.g., 
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transaction volume, wallet activity) relevant to that 

interval. Patterns and interactions across graphs that 

change over time may be learnt by feeding this series of 

snapshots into Temporal GNNs. Supervised learning 

relies on labelling these temporal graphs. The most 

typical designation is the return or future price of the 

token after a specified time range (e.g., one hour or one 

day into the future). Anomaly flags, volatility, or changes 

in liquidity are some of the other possible descriptors. To 

get labels, we match the timestamp of the associated 

graph snapshot with price data from sources like 

CoinGecko or on-chain price oracles. Problems like idea 

drift, non-stationarity, and the delayed impact of 

transactions on pricing are brought about by the time 

dimension. Careful alignment of snapshots and the 

inclusion of lagged features or rolling windows to 

maintain context may be necessary to address issues. 

Snapshots are created following major market events, 

such as protocol upgrades, massive token transfers, or 

governance votes, in certain implementations using 

event-based temporal graphs, which provide more 

meaningful transitions between graph states. By creating 

and labelling snapshots at different times, GNNs make 

sure that token networks are not seen as static entities, 

but as ecosystems that are constantly changing. This 

allows the models to generalise over diverse time periods 

and asset classes, adjust to changing market behaviour, 

and anticipate price changes with contextual knowledge. 

4.4 Handling Data Sparsity and Noise 

Blockchain transaction data, while abundant, is often 

sparse, noisy, and unbalanced—particularly when 

modeling interactions across thousands of wallets and 

tokens. Many users interact infrequently, and most 

tokens experience irregular transaction volumes. This 

sparsity poses a challenge for GNNs, which rely on rich 

neighborhood information to learn effective embeddings. 

To address node sparsity, one strategy is to filter or prune 

low-activity nodes and focus on the top percentile of 

wallets or tokens based on volume, transaction 

frequency, or centrality. Subgraph sampling, neighbour 

sampling (e.g., GraphSAGE), and importance-based 

filtering are some of the sample strategies that may 

preserve meaningful structure while reducing computing 

complexity. Wallet spam, bot activity, unsuccessful 

transactions, and manipulative trading patterns are some 

of the sources of noise in transaction logs. Such 

anomalies may distort network signals and impair model 

performance. We use domain-specific criteria, such as 

ignoring failed contract calls or blacklisting recognised 

bots, and outlier detection tools to purge the dataset. 

Using rolling averages or temporal smoothing techniques 

could further improve signal stability while lowering 

edge feature volatility. Feature engineering plays a 

pivotal role in minimising ambient noise. Instead of 

using raw data, normalised features (such log-scaled 

transaction volumes or standardised balances) should be 

used when comparing snapshots. Training graph 

regularisation methods, such as dropout or L2 penalties 

on embeddings, may be used to further prevent 

overfitting to noisy substructures. Training approaches 

like oversampling, cost-sensitive loss functions, or 

quantile-based binning are used to resolve label 

imbalance, which happens when the majority of assets 

show moderate price fluctuations in contrast to a small 

number of assets with large swings. By doing so, the 

model will be able to learn to predict rare but important 

events.Last but not least, managing sparsity and noise is 

critical for the durability and generalisability of GNN-

based models. Preprocessing, sampling, normalisation, 

and architectural safeguards may all be used to improve 

the quality of blockchain data. 

5. Result  

To evaluate the suggested GNN-based model, we used a 

six-month real-world Ethereum dataset that included 

token transactions, wallet interactions, and DeFi protocol 

activity. The labels for the graph snapshots were 

generated daily using the 24-hour forward token returns. 

We contrasted the outcomes with those of standard 

machine learning models (Random Forest, XGBoost) 

and baseline time-series models (ARIMA, LSTM). The 

results showed that compared to baselines, GNN 

architectures, namely TGNs and GATs, produced 

significantly better prediction accuracy (up to 18%) and 

F1 score. When compared to other models, GNNs were 

able to pick up on hidden structural relationships and 

time dynamics. In addition to displaying consistent 

performance across a variety of token kinds, the GNN-

based method proved resilient during times of significant 

volatility. These results provide credence to the idea that 

intelligent asset pricing in decentralised financial 

ecosystems might be scalable and confirm the efficacy of 

graph-based deep learning for modelling the behaviour 

of tokenised assets. 

5.1 Baseline Comparison with Traditional and ML 

Models 
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We set up a number of baseline models grounded in both 

classic financial modelling and cutting-edge machine 

learning to evaluate the suggested GNN-based 

framework. The Black-Scholes model, used for options 

pricing, and the ARIMA model, used for time series 

forecasting, are examples of traditional statistical 

methods. These models disregard interactions at the 

network level in favour of linear assumptions and past 

pricing trends. We also deployed two popular ensemble-

based machine learning algorithms, XGBoost and 

Random Forest (RF), which are trained on manufactured 

factors including volume, volatility, historical returns, 

and token-specific properties. Although these models are 

capable of learning from structured data and capturing 

non-linearities, they overlook the relationship structure 

present in tokenised ecosystems since they handle each 

token separately. Accuracy, F1 score, and mean absolute 

error (MAE) were just a few of the assessment criteria 

that GNN-based models blew away the competition. In 

highly networked DeFi contexts, the main problem with 

classical and ML baselines is that they don't comprehend 

how token values are affected by their interactions with 

other tokens and wallets. During times of market 

volatility or when asset values were heavily influenced 

by changes in liquidity and user behaviour patterns—

which cannot be represented in separate feature sets—

these models demonstrated diminished predictive ability. 

Even after extensive feature engineering, the ML models 

could not adjust to changing market topologies. Natural 

inter-token interactions are encoded by GNNs by default, 

and they learn dynamic embeddings and generalise well 

across asset kinds. This comparison further supports the 

idea that decentralised system price prediction is best 

accomplished by modelling tokenised markets as graphs, 

which is both more suitable and much more successful.  

5.2 Performance of GNN Variants 

A number of variations of the Graph Neural Network 

(GNN) were tested and analysed in order to investigate 

how well various graph-based architectures could 

forecast the values of tokenised assets. These variants 

included GCN, GAT, and TGN. As a first step towards 

graph learning, GCN aggregated characteristics from 

nearby nodes using convolutional processes. Although 

GCN was successful in capturing the transaction graph's 

fundamental structure information, it was unable to 

distinguish between significant entities like whales, bots, 

or liquidity providers since it aggregated all 

neighbouring nodes identically. This was remedied by 

implementing GAT's attention mechanism, which, while 

aggregation is underway, dynamically gives varying 

weights to each neighbour. 

Table 1: Model Performance  

Model Accuracy 

(%) 

F1 

Score 

MAE 

ARIMA 68.2 0.61 0.085 

Random Forest 73.5 0.67 0.062 

XGBoost 75.1 0.69 0.058 

GCN 81.4 0.76 0.041 

GAT 84.2 0.79 0.036 

Temporal GNN 

(TGN) 

87.5 0.83 0.031 

 

In order to take time into consideration and achieve 

optimal performance, Temporal Graph Networks 

(TGNs) represented sequences of graph snapshots or 

continuous-time events. Among the market behaviours 

that TGNs recorded most well were changes in trend, 

shifts in liquidity, and abnormal events. Their ability to 

convey temporal linkages via graph structure made them 

ideal for decentralised finance (DeFi) environments 

characterised by dynamic user interactions and token 

dynamics. Although GCNs served as a solid foundation, 

the research found that GATs improved performance by 

2-3% and TGNs by 3-4%, particularly in periods of 

market volatility. These updates demonstrate the value of 

time modelling in blockchain-based asset networks and 

how GNN designs may be adjusted to better represent the 

nuances of decentralised market conducts. 

(a) 
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(b) 

Figure 3: Performance of GNN Variants (a)F1, MAE 

(b) Accuracy 

5.3 Impact of Temporal Dynamics on Pricing 

Accuracy 

In tokenised ecosystems, pricing algorithms rely heavily 

on time dynamics to work. Decentralised blockchain-

based platforms operate continuously, unlike traditional 

markets that may experience daily trading cycles; asset 

prices on these platforms are influenced by user-driven 

events such as flash loans, liquidity changes, interactions 

between smart contracts, and governance actions. 

Consequently, time-sensitive data must be recorded if 

accurate price projections are to be made. The ever-

changing nature of token links and transaction patterns is 

beyond the capabilities of static graph models like GCN 

and GAT when it comes to asset networks. For instance, 

when there's an unexpected spike in cross-token 

transactions or an upswing in wallet activity, static 

models could miss the mark and fail to predict a big price 

change. In contrast, temporal graph networks (TGNs) 

depict the progression of interactions across time. By 

analysing time-ordered events or graph snapshots, 

Transient Graph Neural Networks (TGNs) are able to 

learn both short-term behavioural patterns and long-term 

structural modifications. This significantly enhances 

their prediction skills. At very volatile occasions, such 

protocol upgrades, token launches, or market downturns, 

TGNs maintained their outstanding accuracy, but static 

models lost ground.  

We also tested how well the models performed over other 

time periods, such as hourly, daily, and three-day 

forecasts, and TGNs always came out on top. This proves 

that they can generalise relationships between times 

across different scales. Incorporating temporal edge 

information, such the recency or frequency of 

transactions, greatly enhanced the accuracy of the model. 

In the end, temporal dynamics play a crucial role in 

simulating the actual behaviour of assets in blockchain 

networks, rather than only being an ancillary component. 

Oversimplifying dynamic market systems is a real 

possibility in models that disregard time as a variable. 

Gain an advantage when pricing tokenised assets by 

capturing the real nature of decentralised financial 

transactions by integrating temporal context into GNNs. 

5.4 Case Studies: Token Behavior Patterns and Price 

Signals 

To demonstrate the real-world applicability of the GNN-

based framework, we conducted case studies on several 

prominent tokens from the Ethereum ecosystem, 

focusing on behavioral patterns and price signals 

captured through graph analysis. One example involved 

a DeFi governance token frequently traded across 

Uniswap and Curve pools. GAT and TGN models 

identified that increases in interaction frequency with key 

liquidity wallets preceded short-term price gains. These 

wallets acted as liquidity aggregators, and their activity 

patterns were strong predictors of upcoming market 

moves—insights missed by baseline models. In another 

case, a yield farming token showed significant 

correlation between wallet clustering behavior (i.e., 

groups of wallets repeatedly interacting with the same set 

of tokens) and subsequent price volatility. GNN 

embeddings were able to capture these clusters as dense 

subgraphs, flagging them as potential indicators of 

coordinated market activity or manipulation. 

A third case examined a stablecoin with anomalous price 

fluctuations. The model detected that a large number of 

failed transactions and smart contract re-entries were 

linked to price instability. These patterns, embedded in 

the graph's edge features, became significant predictors 

in the TGN model, revealing how low-level transactional 

irregularities can impact asset valuation. Across all case 

studies, one consistent finding was that tokens with high 

centrality, transaction diversity, and strong cross-token 

relationships generated the most accurate predictions. 

GNN models not only captured these properties but also 

allowed for visualization of token influence and 

interpretability of learned embeddings, providing 

explainable insights into how price predictions were 

formed. These case studies validate the practical strength 

of the GNN framework in identifying early signals, 

understanding network-driven asset behavior, and 
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offering real-time insights that are critical for investors, 

risk managers, and DeFi analysts alike. 

6. Conclusion 

The emergence of tokenized assets has redefined the 

structure and operation of modern financial markets, 

offering increased liquidity, transparency, and global 

accessibility. However, these benefits come with 

analytical challenges, as traditional asset pricing models 

are ill-equipped to handle the dynamic, decentralized, 

and highly interconnected nature of blockchain-based 

ecosystems. In this context, Graph Neural Networks 

(GNNs) present a compelling solution by enabling the 

modeling of complex relationships among tokens, 

wallets, and smart contracts. Using GCNs, GATs, and 

TGNs—architectures based on Graph Convolutional 

Networks—this research presented a new framework for 

pricing tokenised assets over time. The suggested models 

outperformed conventional machine learning and 

statistical approaches in terms of predicted accuracy by 

depicting blockchain data as dynamic graphs and 

including transaction characteristics, structural 

embeddings, and time dynamics. Because they are able 

to capture sequential dependencies and dynamic user 

behaviours, our investigations show that temporal GNNs 

perform very well under unpredictable market situations. 

Further, case studies shown that GNNs may unearth 

hidden patterns in token interaction networks, leading to 

better price predictions and the early identification of 

market irregularities. Finally, in decentralised finance, 

graph-based deep learning is a game-changer when it 

comes to asset pricing. The use of GNNs provides 

solutions for real-time asset pricing and risk assessment 

that are scalable, adaptable, and interpretable, which is 

crucial for tokenised markets that are becoming more 

complicated. Token economies may benefit from next-

generation financial intelligence if future studies build on 

this approach by using multi-chain graphs, cross-modal 

data (such as social signals and off-chain sentiment), and 

reinforcement learning for active trading techniques. 
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