International Journal on Recent and Innovation Trends in Computing and Communication
ISSN: 2321-8169 Volume: 11 Issue: 6
Article Received: 25 April 2023 Revised: 12 May 2023 Accepted: 30 June 2023

Analysing Bicomplex Matrices in Mathematica

Mamta Amol Wagh
Department of Mathematics, Deen Dayal Upadhyaya College (University of Delhi),
Dwarka, New Delhi 110078, India
Correspondence to: Email: mamtanigam@ddu.du.ac.in

Shyamli Gupta
Department of Mathematics, Dr. Bhimrao Ambedkar University,
Agra 282004, Uttar Pradesh, India
Email:

Abstract— A bicomplex number is a composition of two complex numbers or four real numbers. However, a Bicomplex Matrix or a BC-
Matrix is a m X n array of bicomplex numbers. Recently, studies on BC-matrices have caught interest of mathematicians where determinant
and other properties have been explored. In present study on BC-matrices, mathematical computation software Mathematica has been applied
and various examples and counterexamples are provided to substantiate the results. Step by step commands were given to find the determinant
and Eigen values of a n X n BC-matrix for which rigorous calculations are needed, if the matrix is of higher order. In a particular case, Eigen
values of a BC-matrix are obtained using single command for which we can verify the relationships between determinant, trace and the product
of eigen values of the matrix. Eigen values by usual method (i.e., by solving the characteristic equation) have also been obtained and differences
have been shown in both the outcomes. Unimodular Bicomplex matrices have been defined and an example for the same has been given and
analyzed. Bicomplex numbers have found deep rooted applications in many areas of sciences, so this development may help in their applications

with accuracy and much less time.
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I. INTRODUCTION

Highlights:
e Analysis of BC-matrices in Mathematica with much
lesser computation time.
e Finding determinant, Eigen Values of these matrices
with the help of Mathematica commands.
e  Unimodular BC-matrices.
Notations:
The symbol C, is for real numbers, C; for complex numbers
and C, for bicomplex numbers. First idempotent part of a
bicomplex set X, when the complex space is C, (i1), is denoted
by 1,. Second idempotent part of a bicomplex set X, when the
complex space is C; (i,), is denoted by 2. First idempotent part
of a bicomplex set X, when the complex space is C;(i5), is
denoted by A;. Second idempotent part of a bicomplex set X,
when the complex space is C; (i,), is denoted by 4,.
Before defining bicomplex numbers, let us see what quaternions
are.

1.1 Quaternions
Quaternions were defined by Irish mathematician, Sir William
Rowan Hamilton in 1843. A quaternion is defined as a four-
dimensional number given by
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X1+ ix, + jx3 + kxy,
X1,X5,X3,X4 € C;  and
k,jk = —kj = i,ki = —ik = j. He defined quaternion as the

where i%,j5k*=—1,ijj = —ji =
quotient of two vectors.

The quaternions were the first non-commutative division
algebra to be discovered.

1.2 Bicomplex Space
Cp = {oxg + i1xy + ixx3 + iqipx4: X1, X0, X3, %4 € Co} where i

= = — L= )i,
or

C, ={z; + iy25: 21,2, € Cy}

represents the set of bicomplex numbers.
Bicomplex numbers (defined by Corrado Segre [7] in 1892) and
quaternions both are real four-dimensional spaces but C, is a
commutative space. In many ways bicomplex numbers
generalize complex numbers more closely and more accurately
than quaternions do. But commutativity is gained at a price. It
is a well-known fact that the ring of bicomplex numbers is not
a field, since zero divisors arise to prevent such a possibility.
Some important applications of bicomplex algebra may be seen
in [2]. Recently, a lot of work has been done in bicomplex
sequence spaces [10, 11], bicomplex functional analysis [1],
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bicomplex matrices [14], bicomplex duals [13], bicomplex
modules [12].

1.3 Differences Between the Algebraic Structure of C, and Cq
Singular elements other than zero, exist in C,. In complex space
we have only two idempotent elements, but in C,, there are
nontrivial idempotent elements. Non-trivial zero divisors also
exist in bicomplex space.

1.4 Idempotent Elements in C,
Besides 0 and 1 there are two other idempotent elements in C,,
given by
140,

1—iyi,
e = — .

2% 2

1.5 Idempotent Representation [9]
There are two types of idempotent representation of a
bicomplex number.

First idempotent representation
E=x1 +i1xy +iyx3 +iqipxy

= (g + i) + ip(x3 + iyxs) = 29 + 1,2,

= (z; — i1z)e; + (21 +i1Z5t)e; = 1ze; + 2¢e,
here, 1¢,2¢ € C;(i;) are the idempotent parts of the bicomplex
number &, when we consider the complex space with imaginary
unit iy.

Second idempotent representation:
E=x1 +igxy + x5 +iqiyx,

= (1 + ipx3) + iy (xp + i224) = wy + W,

= (wy — ipwo)ey + (wy + wy)e; = &6 + 2,
here, &;,&, € C;(i,) are the idempotent parts of the bicomplex
number ¢, when we consider the complex space with imaginary
unit i,. Idempotent representations play an important role in the
analysis of bicomplex numbers as all the mathematical
operations can be performed component-wise with this
representation. For detailed study of bicomplex numbers one
can refer to the book by Price [6].

II. Bicomplex Matrices and their analysis in Mathematica

2.1 Bicomplex Matrix - Definition

A matrix A = [é,]mxn Whose entries are from the set of
bicomplex numbers C, is called a bicomplex matrix.

Le.,

$11 §12 v S
a=[%1 S22 G £ €C1<p<mi
$mi Smz v Smn mxn
Sgsn
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Bicomplex matrices have been studied by many authors. A few
authors have studied the structure of bicomplex matrices. Alpay
et al. has given a chapter on Bicomplex functions and Matrices
in [1]. Jogendra in [3] and 4] have studied about the determinant
and eigen values of bicomplex matrices. William and Rebecca
in [13] have studied Jordan Forms, Invariant Subspace Lattice
Diagrams, and Compact Operators.

2.2 Methodology
For the analysis of bicomplex matrices Mathematica version
11.3 has been used in this study. It is a software system with
inbuilt libraries to be applied in different domains of technical
computing. The built-in functions and commands in
Mathematica permit analysis of various types of data from
fields such as "machine learning, symbolic computation,
statistics, data manipulation, network analysis, time series
analysis, optimization, plotting functions and various types of
data, implementation of algorithms etc".
Note 2.2.1. (1) Here we are replacing i; by I and i, by J, as per
the symbols defined in Mathematica. (2) In Mathematica, to
execute any command we press "shift + enter" and get the
output.

2.3 Determinant of a BC-matrix
We know that only square matrices can have determinant, let’s

consider a square BC-matrix A = [Ei f]nxn € CI*™ Then

det(4) = det(1,)e, + det(2,)e, or
det(4) = det(4,)e; + det(4,)e,
Computing determinat of a BC-matrix

Step 1: det [(Z; ZZ)] (press shift + enter)
Step 2: Simplify the expression obtained in Step 1 for second
imaginary unit J by

Simplify [expression, j2 == —1] (press shift + enter)

2.4 Unimodular Bicomplex Matrix

Definition 2.4.1. A square bicomplex matrix having
determinant +1 or -1 . The inverse of a unimodular matrix is
also unimodular.

Example of a unimodular BC-matrix:
A+1x)/2 @A—-1x])/2
((2 +41+])/2 (1+1 *])/2)
let’s verify it by finding its determinant.

A+1x)/2 A-1%])/2

dEt[((2+41*1)/2 (1+1*D/2)]
1 5/

Out[']=—Z_T
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Since Mathematica does not take the symbol J as the second
imaginary unit i,, we must simplify the above expression by

replacing J? by -1.
I H S' l.f 1 5 2 2 1
n[-]: implify i

Out[]=1

2.5 Computing Inverse of a BC-matrix

a;;  Aagp
Step 1: Inverse [(
p az1 Ay

Step 2: Write the expression obtained in step 1 in matrix form
by

)] (press shift + enter)

MatrixForm[ {expression } ] (press shift + enter)
Step 3: Simplify the expression obtained in Step 2 for second
imaginary unit J by
Simplify[expression, j2 == —1] (press shift + enter)

Example 2.5.1. Now, lets find the inverse of a BC-matrix with
an example.
1+1xn/2 @A —I*])/Z)

Consider the matrix B = ((2 +al«))/2 (A+1+))/2

y A+ix))/2 (1—ix))/2
In[]:= Inverse [((2+41*])/2 (1+i*])/2)]
1_5/%V'E (B L,
2\-z-7%)2\~z— 7%
Out [] = ¢ ( ! 4) ( i 4)
-2 —4i 1+ij

+i -
2(—1—5{2)']
“14y [

_1_572
In[-]: = MatrixForm |1 2(_24_ 4; )) [
19|

1+1

2
L),

1+i (—1+i]) 1422

2(-1-50 ) (15

(For verification, lets find the product of the matrix B and its
inverse)

i A+1+xn/2 A-1x)])/2
In[] = ((z +alx])/2 (1+1 *1)/2)
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1+1if —1+1i]

35 1)
-2 —4j] 1+1i]

45 (5P
(1 +i))?

-

(1 —-ip(=2—4i))

1 5)2\ °

o=l *C)

(1-ipA+1))

)

—1+ip@A+inH

4<_%_5.4_]2> J

((1 +i)(=2—4i)) (1 +i))(2+ 4i)) \

(R =)

(1 +ij)? i (=1 +1))(2 + 4i)
G D)
[ (1 +1i))?
()

(1 —iD(=2 - 4i])

TeELE

a-ipa+ip |’

pE=o

=1+iHA+1i)
-5
(1+i])(—2—4i]) (1+i])(2+4i])
T 4 (1T

A

In [-]: = Simplify

474 4774 2 4
(1 +1i))? +(—1+i])(2+4i]) J7=

1 5)2 1 5)2
4(—1—7) 4<_Z_T>

Out [] = {{1,0},{0,1}}
which is an identity matrix.
Let the above inverse is denoted by matrix W, ie., W =

1+4i,] —1+iJ
2 2
i )
—2-4iJ 1+i,]
\') =)
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Note 2.5.1. The above matrix W also serves as another example
of unimodular BC-matrix. Basically, the inverse of a
unimodular BC-matrix is another unimodular matrix. To verify,
lets find the determinant of matrix W.

1+
1 52y
2 (—r T)
—1+y [
1 5)2
2 (_Z_T))
In[-]: = det _2—4i]
1 572\’
2 (_Z_T)
1+
1 5)?
2(-3-5)) )
out il 4 20)2
e e CPy S A G PN B
4
S (@52
In[-]: = Simplify 20j2
S (@+5/9%
JP=-1
Out[]=1
(Hence, we conclude that (((Zl-l:l—élli**]]))//ZZ 8 ; i :ﬁﬁ) is a

UNIMODULAR BC-matrix.)

2.6 Computing Transpose of a BC-Matrix 'Y '
A+1x))/2 (2—41*])/2)]
A+Ix))/2 @+1x])/2

{%(1 + 11)%(1 +ip),

In[-]:= Transpose [(

Out [] = 1
{E 2- 4i]),5(1 + i])}

1 1

@ +iD,5; @ +iDy,
In[-]: = MatrixForm {2 2 l }

{% - 41]),%(1 + i])}

l(1+i]) 1(1+i])
Out []// MatrixForm = 2 %
5@ —4)) SA+i))

Computing Determinant of the Transpose of BC-Matrix 'Y’
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Example 2.6.1.
1 1
Ca+ipza+inl,

In[]: = det [{ ‘2 )
F@-4in.a+in]
Out [] = —1+i]—5L2
4 4
In[-]: = Simplify [—1+ iJ —SLZ,]2 = —1]
4 4

Out[[]=1+1
(with above example, we see that determinant of a BC-matrix is
same as determinant of its transpose.)

Example 2.6.2.
- (L+1%))/2 1/2
In[-]: = det [((1 +I1x])/2 (1+1 *])/2)]
ij J?
Out [-] = T

In[-] =9, (% —%)

Out [] = : —

4 ;
-3)

(Note: We see that computing the double ] -derivate (or
computing the J/-derivative twice) of the determinant of a BC-
A+1x])/2 1/2 ) —

A+1+D/2 (L+1sp)2) 8V =12

N |~

In[-] =9,

NP =

Out['] = —

matrix (
In[-]:= Simplify [% —%
Out [] = %(1 + 1))
1 .
In[-]:= 9, (Z a1+ 1]))

Out[]=7

Note 2.6.1. If we first simplify the determinant for J and then
find the J-derivative gives a complex number.

Example 2.6.3. Consider another BC-matrix

((3+1*1)/2 1/5 )
A+1+))/2 A+1x]/2)
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mH,=@4¢§15353 aetingl

W J?
Out [] = %‘FE—Z
2
In[-]: = Simplify [20 +%—]— J? == 1]

9
Out [] = 75i(~i +))
9
In[]: = 9, <Ei(—i +1))
9i

Out [] = 1—0

(Now lets find J-derivative of the determinant)

e \id

9
In[] = 1—(1) A %
Out [] = —%

Observation 2.6.1. Simplifying the determinant of a BC-matrix
for J and then finding the J-derivative is not same as finding the
J derivatives of the determinant.

2.7 Examples of Singular BC-Matrix

Example 2.7.1.
( 3*<1+I*]> 5*(1—1*]) \I
In[]: = det \ 2 2 /

1 (557) 7 ()

Out [] = 4 + 4J2
In[-]: = Simplify [4 +4)',]' == —1]

Out[]=0
&
1

. & 5

therefore A is a singular bicomplex matrix.

Since, det(4) = det

Example 2.7.2.

1+1*]\ (1—1%]
In[-]: = det 2 >< 2 )

) =)

Out[]=0

Example 2.7.3 (Generalized example of singular bicomplex
matrix).
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14+1+%]
In[-]:=det(a*< 2 )

1—1*1 \l
1—1*] /

1+41%]
\”( 2 )
bc ad 1 , 1 5
Out[']=—z+z——bCJ +4ad]
bc ad 1 ,, 1 .
In[]:= Simplity |~ T4 229" 7945
JF=-1
Out[]=0

ax(55) 0= (57)
)

a, b, c,d real numbers.

Hence is a singular matrix for any

Notice that a,b,c,d may be from complex space or from
bicomplex space, this matrix will always be a singular matrix.

(G (5
1+ ()
SESIE A - (5
"~ | *(“2’*’)

1—1%] 1—1%]
1L Q g ) '*Q g )
k) g

2

¥
4

For example, and

are singular matrices.

In[-]: =

i A
32

-Mr—*

In[] =

1
In[-]:= Simplify [Z

Out[]=0

J?
= ]

2.8 Examples of Nonsingular BC-Matrices
1) (R
“:ésﬂg dj%jﬁﬂ
2 2

o (5)0 (57)

Example 2.8.1. Consider matrix

In[-]: = det 1+1%] 1-T1x]
(=27 (=)
2 2
outf] = — 2+ 2 Lipey — Liady + 2 bey? - Saap?
ut[-] = 2 2 21 c/ 21a ] 2 c/ 4-a ]
bc+ad 1'b] 1. a4
——+———ibcJ —zia
In[]:= Simpliy [ [+ * 2 2
Shel2 o d12 J2 ——
+4bc] 4ad] Ni 1

Out [] = —%i(bc(—i +)) +ad(+)))

ax (1—1*/) . (1+1*/)
2 2

Example 2.8.2. . (1+TI*])
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a*<1—1*])c*(1+1*1)

1 1
—bc(1 —iD(1 +i)) +=A%(1 +1i])?,
Il’l[-]:: det 1+21 *] 1_21*] Out[-] :{ 4 1 4
C*( 2 )a*< 2 ) | Zbd(l—i])2+Zab(1—i])(1+i])
Out [] v 0% —zic oS L 1 1
ut '] =——-———z-ia*f —sic*) ——+—
a42 C42 f f a;}Z CZ‘;Z 704 =N +i) +zac +i)?,
Simplify |— — — — =ia?] — =ic?] — +— 1 1
[4 4 2 2 4 4 ] Zdz(1—i])2+Zbc(1—i])(1+i])
Out[] = %(CZ(—i + 2 —a?(i+))?) 1 _ .
Zbc(l - +1i))

1

In[]:= Simplify |3 & (CIHD*—a*A+1)%),

J2=-1
1
Out [1] = E(a2 —c?
—i(a® + c?))) (*%(az —c?—i(a%®+c?))

a? — c? / a? + c?
= = *
2 J 2

2.9 Defining Idempotent Elements E1 and E2 (for
Computations in Mathematica)
Lets define idempotent elements e; and e, in Mathematica and
then proceed further with some more examples.

Example 2.9.1.
El=(+1%])/2;
E2=(1-1%])/2;
etz o)l
Out[-] =1iJ
In[-]: = det [(5_*31*5511 _5—1 ] E§2>]

3i 25 3i ) 25J4
Out[']=z+(z+z)] + 4

3i+(25+3i) .
4 4 4 J

In[-]: = Simplify

254 5
A a
Out[]=0
h (—3*E1 —5*]*E2). oul =
ence, S«fxEl  —I«E2 is a singular matrix.

a*E1l bx*E2 axEl b*E2
Example 2.9.2. (c «Fl d= EZ) (c «E1 dx EZ)
(product of two BC-matrices)
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1
+ZA2(1 +1))?,
In[-]: = MatrixForm |1 < 1 r
Zbd(l —i))?

+%ab(1 —ip@A+1i)H

%cd(l—i])(1+i]) _
1 L e
+Zac( +i/)%,

1 .
ZdZ(l - 1])2

1 : :
+Zbc(1 =i +1i)))
Out[*]//MatrixForm

1 o) R, 1 1
- (Ebc(l —-ina+ |])+ZA2(1 +i)? Zbd(l —i/)? +Enb(] —iJ) (1+i))

1 1 1 1 ) 1+
1 - 1 . =
Fed(1=1)) A+ +gac(l+) A=Y +7be~1))

%bc(l —iNA+i))

1
+—-a*(1+i))?
In[-]: = det 14
Zbd(l —if)?

+%ab(1—i])(1+i])

%cd(l—i])(1+i]) _
1 1
+Zac( +1i))%,

1 .
242 =1)?

1
+2be(l =D +i)

b%c? 1 bd+a2d2
16 87" 16

1 1
Sp2.272 _ 2 2
+8bc] 4abcd]

Out [] =

1 1
24272 2,214
+ad]+16bc]

8
1 1

= 4 2 J274
8abcd] +16a a<J
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b%c? 1 b d+a2d2
16 87T 16

. . 1 1
In[-]:= Simplify -|-§b2c2]2—zabcd]2

1 1
_q24272 2,274
+8ad]+16bC]

4 L aaia 2
4t +—a2d*, ) = 1]
Out[-]=0
hence (a*El b*EZ).(a*El b*E2
> \cxE1 d=*E2 cxE1 d=+E2

singular matrix.

2.10

Consider four bicomplex number 4, B, H, P defined as follows.

show wat et ()] =aet[ ()

der(d Y7 = 1/qer(4 1),

In[l:=A=2+4314+59+1x%]
B=3+51+23]+2[+]
H=2+491+25]—1x]
P=23+8]—-23]+3I%]

detdet [(fl 1;)]

Out [] = (61 + 48i) + (1186 + 99i)]
—(1937 — 127i)J2
(61 + 48i)
+(1186 + 99i)/
—(1937 — 1270)/?,
P==-1
Out [-] = (1998 — 79i) + (1186 + 99i)]

Inf]:= det[(4 1)]

Out [[] = (61 + 48i) + (1186 + 99i)]
—(1937 — 127i))?
(61 + 48i)
+(1186 + 99i)]
—(1937 — 1270)/2,
J2=-1
Out [-] = (1998 — 79i) + (1186 + 99i)]

therefore, det [(g I;)] = det [(fl g)]

Now,

In[-]: = Inverse [(fl IB;)]

In[-]: = Simplify

In[]:= Simplify

(23 +8i) — (23 -3i)J
(61 + 48i) + (1186 + 99i)/’
—(1937 — 1271)]?

Out[-] =

(=3 — 5i) — (23 + 2i))
(61 + 480) + (1186 + 99D [’
—(1937 — 127i)J2
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) will give a

(=2 —9i) — (25 — i)/
(61 + 48i) + (1186 + 99i)]’
—(1937 — 127i))2

2+ 3i) + (59 + i)/
(61 + 48i) + (1186 + 991)]
—(1937 — 127i))2

In[-]: = det[%104]

61 + 48i
Out[-] = —

((48 —61i) + (99 — 11861)])2
+(127 4 1937i))?

(1186 + 99i)]
((48 —61i) + (99 — 11861)1)2

+(127 + 1937i))?

(1937 — 1271)]2

((48 —61i) + (99 — 11861)])2

+(127 + 1937i))?

W 61 + 48i)
In[-]:= Simplify |—

((48 — 611))
+(99 — 1186i));)
+(127 + 1937i))2
(1186 + 99i)/

((48 —61i) + (99 — 1186i)])2
+(127 + 1937i)J2

(1937 — 127i))?

(48 — 61i)
+(99 — 11861)]
+(127 + 1937i))?

2:

27

1

Outll = Ho98 — 791 + (1186 + 991))

hence, we have verified that determinant of the inverse matrix
is equal to inverse of determinant of the matrix that is

det(X~1) = 1/det(X).

2.11

For the bicomplex numbers A, B,H and P defined in 2.10

above, show that the determinant of a BC-matrix (2 g) is

same as the sum of the determinants of idempotent matrices,

OR, det(X) = det(1y)e; + det(2y)e,,
A=(2+30)+]*(59+1)
B = (3 +5i) +/ * (23 + 2i)
H=(2+90)+] * (25 —1)
P = (23 +8i) +/ * (=23/ + 3i)
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Let us find idempotent parts of these bicomplex numbers
A,B,H and P
In[[]:=1,=2+3i—1(59 +1i)
Out["] = 1(243i)+(s9+i)) = 3 — 56i
Similarly, define 24, 15,25, 1y, 2y, 1p, 2p.

We want to find det [(1’4 1B>],
H P
. 3_-56i 5—18i
In[]: = det [(1 —16i 26+ 311)]
Out [] = 2097 — 1265i

Here we want to find det [(2‘4 23)]

a2
In[]: = det [(é i gi; 210t2185:i)]

Out [-] = 1899 + 1107i
Here we are computing det [(1A 13)] el
P

1, 1
In[]:= Simplify [(2097 — 12650) * (1 + i *)/2]
1265 2097i\
Out [-]=(—+ )(—1+])
2 2
(*Here we are computing det [<2A 23)] : E2*>
2. 2p
In[]:= Simplify [(1899 + 1107i) * (1 — i *J)/2]
1107 1899i
out[]= (5 -—5—) G+
1265 2097i .
i, 20y
In[]:= Simplify | * 7107 1g99iy
Can m

Out [-] = (1998 — 79i) + (1186 + 99i)/]
Hence we have verified that the determinant of a bicomplex
matrix is same as the sum of the determinants of idempotent
component matrices, OR,det(X) = det(1y)e, + det(2x)e, .

2.12 Eigen Values of a BC-Matrix
Let us consider the matrix defined in Section 2.11.

Example 2.12.1.

In[-]:= Eigenvalues [(fl g)]

( /(25+111) + (36 + 4i)]

L) (130 + 1790)
OutlT=12| vz | —(1516 — 2987 |
L +(4514 — 110i))2

(25 + 11i) + (36 + 4i)]
1 : ,
5 +ﬁ\/(130 +179i) — (1516 — 298i)]

+(4514 — 110i)/2
(25 + 11i) + (36 + 4i)]

(130 + 179i)
—(1516 — 2981)] |’
+(4514 — 110i)/?

1
In[-]:= Simplify 2| —v3
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—8768

_+(%83i2 + (36 + 4i)))

—5961)/
(25 + 11i) + (36 + 4i)]

1 :
In[-]:= Simplify Ek“ﬁ (130 + 179i) )

out[-] = %((25 +11i) —

—(1516 — 298i)/
+(4514 — 110i))2

1]

1 _ .
Out[] =7 ((25 +111) + \/E(fg?f’ffgggf))] + (36 + 4i)))

therefore, eigen values of the BC-matrix (‘;_11 ﬁ) are

1 . (-8768 + 578i)
7 ((@5+11D) = j—(3032 — 596i)]

+(36 + 41)))

1 , (—8768 + 578i)
prec - 1D J—(3032 — 5961)F

+(36 + 41)3)
Now let us find the product of eigen values of this matrix

g (3 d- | AT 4

+ 4i)))

1 _ . 578i .
] E((25+111)+JE(38073628:’E_)97681‘))]+(36+41)/)

N7

3032

>
—8768 + 578i

(25 + 11i) + \/5(307362 :’597611))] + (36 + 4i)))

Out [1] = %((25 + 1L + (36 + 4)))

—8768

(_J’ég%‘z + (36 + 4D))

—596i)/

1
In[]:= Simplify |7-((25 + 11i) -

. (—8768 + 578i)
25+ 110 + J—(3032 —596i) |,
+(36 + 4i)]
j2=-1
(1998 — 79i) + (1186 + 991)]
(* which is same as determinant of the matrix* )
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hence, we have shown here that the product of eigen values is
equal to the determinant of the given BC-matrix.

Now, let us find the eigen values of a given matrix by traditional
method i.e., by finding the roots of the characteristic equation.

n[g:=det[( )=y )]
Out [] = (61 + 48i) + (1186 + 99i)]

—(1937 — 127i)J2 — (25 + 11i)u
—(36 + 4i)Ju + pu?
In[-]:= Simplify [(61 + 481) + (1186 + 99i)],
—(1937 — 1271)J? — (25 + 11i)u
—(36 + 4i)ju + p?
J?=-1]
(1998 — 79i) + j((1186 + 99i)
—(36+4i)w) — (25 + 11i)u + p?
(this is the characteristic polynomial)
(1998 — 79i) + j((1186 + 99i)
—(B6+4)u) — (25+ 11i)u
+u? =0,u
( (254 11i) + (36 + 41)J

1 (—3744 + 433i)
2| =v2 |—(1516 — 298i)]
L +(640 + 144i))2

In[-]: = Solve

&G (—3744 + 433i)
K721 +v2 |-(1516 — 298i))
+(640 + 144i)J2

These are characteristic roots or characteristic values or eigen
values. let us simplify them for J.
(25 + 11i) + (36 + 4i)]

(—3744 + 433i)
—V2 |-(1516 — 298i)]
+(640 + 144i))2

il
In [-]: = Simplify 5

(—8768 + 578i)
—(3032 — 596i)]

(25 + 11i) + (36 + 4i)]

(—3744 + 433i)
+V2 |-(1516 — 298i)]
+(640 + 144i)/2

Out [ = (25 + 1) - + (36 + 41)))

1
In [-]:= Simplify L

2 = =1

(—8768 + 578i)

—(3032 — 596i) T (30 +4D))

out [] = %((25 +110) +

Observation. Eigen values found by both the methods are same.
Let us find the sum of eigen values

1 . —8768 + 578i
In[:=5 @5+ 111 = E(3032 j596i1))]

) - .
+5((25+ 1) + 5(3807365_*55972‘))] + (36 + 4i)))
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+ (36 +4i)))

Out [] = %((25 + 11i)

- \/(—8768 + 578i) — (3032 — 596i)/
+ (36 + 4i)])

+%((25 + 11i) + ,/(—8768 + 578i) — (3032 — 596i)]
+ (36 + 4i)))

1 | (~8768 +578i)
In []: = Simplify |2 (2> + 11D — J—(3032 — 596i)]
+(36 + 4i)))

1 : (—8768 + 578i)
T @S+ 1+ J—(3032 —596i)]

+(36 +4i))),j2 = -1
Out [] =25+ 11if) + (36 + 41)]
which is the sum of principal diagonal elements of the matrix
(or the trace of the matrix) i.e., A = (2 + 3i) +j * (59 +1) and
P = (23 +8i) +j * (—23] + 3i).

Example 2.12.2. Let us consider the matrix (1 ;] ?) and find

its eigen values by both the methods.
oir=aa'} )
i (+= =i %)
In[-]: = Eigenvalues [(1 *;] ?)]
Out [] = {i/,J}

mp):=dee(*3) )=2+(5 )]
Out[]=i/2 - (1 +1i)Ja+ 22

In[-] == Simplify[i)J? — (1 + i)JA + /12,]
J?==-1

Out[]=—-i—(1+i)Ja+ 22

In[-]: = Solve[—i — (1 +i)jA + A2 == 0, 1]

{,1 > %((1 +i)] —V2,/2i + ijZ)},

{/1 > %((1 +i)J + V22 + ijZ)}

In[-]: = Simplify %((1 0] -V2y2i+ ijz)'

| ==

Out [] = (% + %) (—1+)

In[]: = Simplify %((1 tOJ+V2y2 UZ)’
J2==-1

Out [[] =

Out [] = (%+%) 1+
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Thus, the eigen values of the given matrix are G + %) (-1+)

and (41 (1 +J) which are different from the earlier values.
2 2

So we can say that the process gives all the n? eigen values of
the BC-matrix.

l:%_ %) (—1+ )+ l:%_ ]E\‘l (1 + J)(+ here we are finding the product of eizen valeus*)
Out [ = 3i(~1+/)(1 + )

In = Simplfy [Fu(—1+ Y1+ 102 = 1]

Out[]=—i
It can be easily verified that the sum of eigen values is equal to
the sum of the principal diagonal elements or the trace of the
matrix.

Thus, the product of these eigen values is equal to the
determinant of the matrix. Hence in both the cases the product
of eigen values is equal to the determinant but the eigen values
are not same by both methods. In our earlier example where the

matrix was (g I;), the eigen values were same by both the

methods.
III. Conclusion

We have given step-by-step commands to find the determinant
and Eigen values of a n X n BC-matrix. The concept of
unimodular BC-matrix has been given with example. We have
given various examples of singular and nonsingular BC-
matrices. Eigen values have been computed by two different
methods, and it was found that in one case the eigen values are
same by both the methods while in the other bematrix the values
were different by different methods but the product of eigen
values is same as the determinant in both the cases. The
relationship between eigen values and trace of a BC-matrix has
also been verified with the help of Mathematica. We can
compute the determinant, inverse and eigen values of a higher
order BC-matrix easily with the help of Mathematica. We have
also observed that simplifying the determinant of a BC -matrix
for J and then finding the J -derivative is not giving the same
outcome as finding the J derivatives (twice) of the determinant.
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