
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1344
IJRITCC | March 2015, Available @ http://www.ijritcc.org

A New PDAC (Parallel Encryption with Digit Arithmetic of Cover Text) Based

Text Steganography Approach for Cloud Data Security

Mayanka Gaur, Manmohan Sharma

Department of Computer Science and Engineering, Mody University of Science and Technology, Lakshmangarh, Sikar (distt.),

Rajasthan, India

Email: gaur.mac1305@gmail.com, manmohan.manu@gmail.com

Abstract--- Internet Computing provides dynamic virtualization, resource pools, services and high availability servers. With rapid growth of

internet computing technology, there is a high demand for data storage security on cloud. In this paper we are presenting a useful new approach

of text based steganography for cloud data security. In our approach, simple addition, subtraction and multiplication of digits of ASCII code of

each character of cover text is done and these new generated numeric values are used to encrypt ASCII values of our plain text. Since, in our

approach, there are three basic airthmetic operations that are performed on every character of cover text, therefore, after airthmetic calculations

each and every character will generate three numeric values such that, each and every numeric value will encrypt two ASCII values of plain text

parallely. One from beginning of array of ASCII values of plain text and another one from ending of the very same array. In our approach, one

character of cover text hides at most six characters of plain text. Thus memory allocation problem for cover text and execution time both are

reduced. Using parallelism performance of our approach is enhanced.

Keywords- Information, Hiding, Cryptography, Steganography, Text Steganography, Arithmetic Operation, Mathematical calculations,

Encryption, Parallelism.

__******__

I. INTRODUCTION

Cloud computing become an IT fuzzword from past few years.

Cloud computing accumulates all the computing resources and

manages them by some software. There are billions of users

using cloud services synchronously. Users need not to worry

about how to buy the servers or softwares for a long time

perspective instead they can directly use or buy computing

resources from the cloud using internet. Users generally worry

that the cloud computing providers can misuse their important

data present on cloud. The only way is to use some encryption

method to hide our plain text such that it cannot be figured out

with intrusive eyes. Currently there are two ways of encryption

of our plain text one is Cryptography and another one is

Steganography. These two approaches are somewhat different

from each other. Cryptography is used to hide the contents of

the message using either symmetric or asymmetric encryption

method whereas Steganography hides the existence of our

primitive message using some cover media. Steganography is

the art of writing message or data in such a way that no one

else except the sender and destined recipient, presume the

existence of the message.

Steganography is the science of writing hidden messages in

such a way that no one apart from the sender and intended

recipient even realizes there is a hidden message. The main

goal of Steganography is to lurk the communication.

Steganography transmits a message in some cover media i.e.

text, image, audio or video files such that to effectively conceal

the presence of message over communication channel. Due to

some limitations in Cryptography method as the third party is

always aware of ongoing communication, Steganography is

used more for concealing the original message. British and US

government banned the use of cryptography after arrival of

9/11 and from then onwards Steganography gained the

importance. Steganography overcomes the limitation of

Cryptography by hiding the message in an innocent looking

object called cover media which is not identifiable by human

eyes. Thus, we can say that the third party is not aware of

hidden message in an ongoing communication. It totally

conceals the fact that some important communication is going

on.

Generally, there are four types of cover media i.e. image,

audio, video and text. Among these, text file requires less

memory storage so hiding message/data in text cover media

and then storing it on cloud server will take less memory as

compared to other cover media's. So, we are taking text cover

media. Text medium is comparatively difficult with other cover

media's as there is lack of available redundant information in

text data. Message or data hidden using encryption in text

cover media is referred to as text steganography. In this paper,

we are presenting an overview of existing text steganography

approaches and our proposed approach of Text Steganography.

The main problem with many existing methods of Text

Steganography is using large bytes of cover text for encryption

and decryption for hiding small bytes of plain text and also it

takes too much time in encryption and decryption. We

introduce new approach based on Text Steganography which

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1345
IJRITCC | March 2015, Available @ http://www.ijritcc.org

easily hides plain text or original data in the cover text and also

takes very less time for encryption.

This paper presents an efficient Text Steganography approach

based on simple mathematical calculations and parallelism. We

are doing addition, subtraction and multiplication of digits of

ASCII code of each character of cover text and then these

digits are used for encrypting our plain text in parallel. Thus

performance is enhanced using parallelism. In this approach

one character of cover text hides six characters of plain text

thus memory required and execution time both will be less

therefore performance is increased. This approach will generate

three digits for one character of cover text in which one digit is

used to encrypt two characters of plaintext parallely one from

starting and another one from ending.

Our approach requires maximum n bytes of cover text for

hiding 6n bytes of plain text since one character of cover text

can hide six characters of plain text.

We are presenting some existing text steganography

techniques. Then we will describe our proposed approach with

it's implementation algorithm of encryption and decryption. We

are describing our approach with an example for easy

understanding. This method may also have some merits and

demerits which we will try to remove in future.

II. RELATED WORK

The aim of Steganography is to hide our plain text or data

through the communication channel using some cover media. It

is necessary to use some other redundant data as a cover

medium for the existing plain text/data. The probable media

that can be used as a cover can be image, audio, text or a movie

clip/video file. Out of these different cover media files, a text

data less bytes and occupies lesser memory storage as

compared to other media files [1]. Text steganography is used

more in comparison to other media as it would encrypt more

bytes of plaintext and can communicate more information with

less storage and execution time. Text steganography is used

more in comparison to other media as it would encrypt the

plaintext and merge with cover text which is generating

random character sequences. Text steganography is believed to

be the trickiest due to deficiency of redundant information

which is present in image, audio or a video file. Text data

storage requires less memory and it’s faster to read as well as

easier communication makes it preferable technique to other

types of Steganography methods [11]. Text steganography can

be broadly classified into three types : Format based, Random

Statistical generation and Linguistic methods.

A. Format Based Methods

It changes the text content to hide secret information. This

method involves changing color, size or type of font and

adding white spaces to the text content. This method has some

demerits. If suppose third party opens and reads the text

stegano file in word processor then it will have misspelled

words and white spaces included in it will be removed.

Similarly changing size, font type, font color are normal

changes(are not much effective in hiding information) and are

easily identifiable by intrusive eyes [3]. One major fault of this

method is that if suppose third party also has original files then

it would be very easy to get original text by simply comparing

original file with stegano file.

B. Random and Statistical Generation

In this method first generating random sequence of characters

known as cover text [4]. On this generated random cover text

statistical properties are applied. This method is based on

character sequences and word sequences. Firstly hiding

information within character sequences appears as a random

sequence of characters or like a random cover text thus random

generation. Secondly applying statistical properties in order to

generate "words" (without lexical value) having similar

statistical properties as those of real words in given language is

what statistical generation method is.

C. Linguistic Steganography

In this method, focus is mainly on linguistic properties of

random generated text. Syntax of text can be used as a

linguistic structure to hide secret message or information [6].

Sometimes spaces are used as a linguistic structure to hide

information.

Existing Approaches:

In this sub-section, we present some of the popular existing

approaches of text steganography.

A. Open Space Method

In this method, white spaces are used to hide secret message.

Adding white spaces in the text is very common or general and

thus, cannot be recognizable through intrusive eyes. This

method does not change the meaning of text document. White

spaces can be added to hide secret message in three ways

namely Inter-Sentence Space method, End-of-line Space

method and Inter-word Space method. In Inter-Sentence Space

method as the name suggests, space is added between

characters (i.e. after every terminating character) to hide

message. In End-of-line Space method, white space is added

between lines (i.e. at the end of every line) to hide message. In

Inter-word Space method, space is added between words (i.e.

after every word and before every word) to hide secret data.

Open Space method has one fault if third party or intruder

rewrites the text then the secret data will be destroyed. So that

is why it is not used.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1346
IJRITCC | March 2015, Available @ http://www.ijritcc.org

B. Line Shift Method

In this, as the name suggests, text lines are shifted vertically to

some degree. To hide 0 bit line is shifted down vertically to

some degree. Similarly, to hide 1 bit line is shifted upwards

vertically to some degree. Shifting lines up or down to some

degree would not be identifiable by intruder. On the basis of

distance between centroid of marked line and it's control lines,

whether to shift line upwards or downwards is chosen. This

method has some fault that distance can be easily observed

through human eyes or measured using some special tools or

using OMR sheet.

C. Word Shift Method

It is similar to line shift the only difference is that in this

method the text words are shifted horizontally either from left

side or from right side. White spaces are automatically added

between words in the document while justifying the text. To

casual readers this method is not easily identifiable as variable

spaces between words are very common. In this method, a bit

is hided as a white space by horizontally shifting a word within

a line. This method has a fault that for decoding algorithm

original document is required and if intruder or third party gets

this original document then this method is easily noticeable to

him or her and he or she will be able to get the hidden message

by making comparison of original document with the modified

one. Another defect of this method is that rewriting of

document will remove the hidden data. This method is very

time consuming.

D. Acronyms Method

In this method, abbreviations or full form of words are used to

hide secret bit. To hide bit 1 abbreviation of word is used and

to hide bit 0 full form of word is used.

E. Syntactic Method

In this method, syntax of text document is used to hide bits 0

and 1 for example full stop (.), semi-colon (;), comma (,), etc

are used to hide bits. So, by adding extra punctuation marks to

the document, bits can be made hidden [9]. We can use

semicolon (;) or any other punctuation mark to hide bit 1 and

similarly full stop (.) or any other punctuation mark to hide bit

0. But this method has one fault that adding extra punctuation

marks to the document will change the entire meaning of the

document and hence the document will be of no use.

F. Semantic Method

In this method, synonyms of actual words are used to hide the

bits. To hide bit 1, actual word is used as it is whereas to hide

bit 0, synonym of that very actual word is used. In case of

rewriting of data or modifying text format the hidden or secret

message can still be retrieved back. So, this method can be

considered as best among other methods but due to

replacement by synonym word, problem can also occur.

G. Feature Coding Method

As the name specifies, features of text are modified to hide

secret data. There are two ways to implement this method. One

way is to change the certain attributes of text like changing font

color, size, type, etc to hide secret data [8]. Another way is

either by increasing or decreasing height of text characters or

by replacing dots or points with characters 'i' and 'j'. One fault

in this method is that if rewriting of text is done or if OCR

program is used then the hidden secret message would be

ruined.

H. Persian/Arabic Method

In this method [8], points of characters in text document file are

used to hide secret bits. To hide bit 0, location of point is not

changed whereas to hide bit 1 point is shifted upwards.

I. Quadruple Categorization Method

In this characters are divided into groups on the basis of their

features like round curves, one or more straight lines, a straight

line in middle, diagonal straight lines, etc. Thus at a time two

bits can be hidden in one character.

J. Capital Alphabets Shape Encoding (CASE)Method

In this method [10], two steps are taken, firstly encoding all

characters of secret data on the basis of shape of alphabets.

Secondly, hiding this message with random cover text. This

will reduce the memory required for storage. Therefore, this

method is considered as best as compared to above approaches.

In this method, if re-formatting or re-typing of text is done then

the secret message will not be lost and it's meaning will also

remain same. Most of above existing approaches uses random

cover text to hide original message.

K. Encryption with Cover Text and Reordering (ECR) Method

In this method [12], to hide n bytes of plain text, n bytes of

random cover text are required. In this, plain text is encrypted

with cover text using simple x-or operation and then this

generated encipher text is merged with cover text using 8-bit

random key re-ordering method. 8-bit random key has four 1's

and four 0's at random position. Cipher text is generated by

placing encipher text whenever 1 is found in random key and

placing cover text whenever 0 is found in random key. Since in

this method, only one operation is required for encryption i.e.

x-or which is very fast in computation. So, time overhead is

less but it has one fault i.e. for large plain text, large cover text

is required.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1347
IJRITCC | March 2015, Available @ http://www.ijritcc.org

L. Parallel Encryption with Digit Arithmetic of Cover Text

(PDAC) Method

In this method [7], three operations are used for encryption of

plain text (which are addition, subtraction and x-or). Addition

and subtraction are applied on digits of cover text and then this

generated new cover text is x-ored parallely with plain text for

encryption process. In this method, one character of cover text

hides four characters of plain text. Since x-oring is done

parallely so time overhead and memory requirement for storage

of cover text both are very less. This method is good but in it,

to hide plain text of more than four characters at least two

characters of cover text are required.

Our idea is to reduce number of bytes of cover text so that the

memory occupied by it can be utilized at somewhere else. So

this is how we came with our New approach.

In all above approaches, to hide one character of plain text

minimum one character of cover text is required. But our

approach is on top of above all these approaches as in our

approach one character of cover text is required to hide six

characters of plain text. Thus, more number of information is

hided using small cover text. Also, memory requirement for

storage of random cover text and time required for execution of

this approach both are very less. Therefore, this approach

reduces bytes of cover text that are required to encrypt (hide)

message or information. In our approach, characters of cover

text is reduced and characters of plain text that cover text hides

is increased. The very next section describes our approach

along with it's implementation.

III. PROPOSED APPROACH

In our approach, we are performing simple addition,

subtraction and multiplication of digits of ASCII code of each

character of cover text. This process would generate three

decimal values for each character of cover text, one from

addition, one from subtraction and one from multiplication

operation. Due to subtraction operation there are chances of

occurrence of negative decimal values. So, to avoid negative

values, add 10 to each decimal values. These new values

generated are used for encryption of plain text using X-OR

operation. But before encryption, generating equivalent ASCII

code for our plain text. Next performing encryption by

parallely x-oring ASCII of plain text and ASCII of generated

values from cover text. Since in our approach there are three

basic airthmetic operation performed on every character of

cover text, so therefore, every character will generate three

numeric values each such that each and every numeric value

will encrypt two ASCII values of plain text parallely. One

encryption is done from beginning of array of ASCII values of

plain text and another one is done from the end of array of

ASCII values of plain text. Therefore, these three numeric

values generated from one character of cover text are

encrypting total six ASCII values of plain text. So, therefore,

we can say that one character of cover text is able to hide at

most six characters of plain text. Thus reducing memory

allocation problem for cover text and also reducing the time

required for executing this approach by making use of

parallelism technique. Since, we know that basic airthmetic

operations and X-OR operation are fast to compute and we had

also used these so we can say that our approach executes faster

than any other existing approach of text based steganography.

So, if we want to send n bytes of plain text through

communication channel or if we want to store our important

commercial n bytes of plain text on public cloud then we would

require maximum of n/6 bytes of cover text.

IV. IMPLEMENTATION

We have developed two algorithms for hiding and retrieving

our plaintext message.

A. Steps for hiding plain text message/data

1) Let your plain text is of n bytes.

2) Now, n bytes of plain text requires ceiling (n/6) bytes of

cover text.

3) Generate random cover text on the basis of step 2.

4) Get ASCII code for each character of cover text.

5) Perform addition, subtraction and multiplication of digits of

ASCII code of each character of cover text.

6) Due to subtraction operation, there are chances of

occurrence of negative decimal values, so to avoid negative

decimal values, add 10 to each of the resulting decimal values.

7) After this we will have three digits/characters of cover text.

8) Get ASCII code for each character of the plain text.

9) Now, perform X-OR operation between ASCII codes of

plain text and ASCII codes of cover text parallely.

10) One character of cover text will encrypt two characters of

plain text parallely i.e. one from starting and another one from

ending.

11) Result of this X-OR operation will have equal number of

characters as that in our original plain text/message/data and is

known as encipher text.

12) Hiding/merging this obtained encipher text with random

cover text. From later example it would be clear how we are

merging/hiding it.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1348
IJRITCC | March 2015, Available @ http://www.ijritcc.org

13) Now after this, our final encipher text is ready but it is in

ASCII codes.

14) Get equivalent characters from this ASCII codes.

15) Now, after this we are ready with our final encipher text to

send to destination through communication channel or to store

it on the cloud sever.

B. Steps for getting back our original plain text message/data

1) Get final encipher text in an array format. This will be array

containing sequence of characters.

2) Get equivalent ASCII codes from final encipher text in an

array format. This will be array containing ASCII code

3) Now, fetch cover text from this array of encipher text using

modulo 7 operation i.e. fetching every character at position 0,

7, 14, 21, 28, (i.e. 0 and multiple of 7) to get our random

cover text.

4) Next, perform addition, subtraction and multiplication of

digits of ASCII code of each character of cover text.

5) To avoid negative decimal values due to subtraction

operation, add 10 to every resulting decimal values. After this

we will have three digits/characters of cover text which is our

final cover text that would be used for x-or operation later.

6) After fetching out cover text, remaining text is known as

encipher text or encrypted message which is then x-ored with

the final cover text. This is explained clearly with later

example.

7) Result of X-OR operation will have equal number of

characters as that was in our encipher text and this result is our

original plain text message/data. But it is in ASCII code.

8) Get equivalent sequence of characters from sequence of

ASCII code.

9) After step 8, we have our original message/data.

C. Pseudo code for message/data hiding

Procedure Hiding (String msg)

msg -> contains plain text

k and j are integer variables.

len -> message length

len_ct -> contains length of cover text

temp, sum, sub and mul are integer variables.

encrypted_mess -> contains message/data after encryption.

BEGIN

k=0, j=0;

SET len to msg.length();

SET len_ct to ceil (len/6);

FOR i=0 to i<(3 * len_ct)

temp= ASCII (cover_text[j]);

sum= (temp/10 + (temp modulo 10)) +10 ;

sub= (temp/10 - (temp modulo 10)) +10 ;

mul= (temp/10 * (temp modulo 10)) + 10 ;

IF (op is sum) THEN

BEGIN

 SET encrypted_mess[k] to cover_text[j] ;

 k= k+1;

 SET encrypted_mess[k] to char(xor(sum, ascii(

msg[i])));

 k=k+1;

 IF ([len-i-1] >= len/2) THEN

 SET encrypted_mess[k] to char(xor(sum,

ascii (msg[len-i-1])));

 k=k+1;

 END IF

END IF

ELSE IF (op is sub) THEN

BEGIN

 SET encrypted_mess[k] to char(xor(sub, ascii(

msg[i])));

 k=k+1;

 IF ([len-i-1] >= len/2) THEN

 SET encrypted_mess[k] to char(xor(sub,

ascii(msg[len-i-1])));

 k=k+1;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1349
IJRITCC | March 2015, Available @ http://www.ijritcc.org

 END IF

END ELSE IF

ELSE (op is mul) THEN

BEGIN

 SET encrypted_mess[k] to char(xor(mul,

ascii(msg[i])));

 k=k+1;

 IF ([len-i-1] >= len/2) THEN

 SET encrypted_mess[k] to char(xor (mul,

ascii (msg[len-i-1])));

 k=k+1;

 END IF

END ELSE

END FOR LOOP

j=j+1; // for loop now executes for next digit of cover text

D. Pseudo code for message/data retrieval

Procedure Retrieval (String encrypted_msg)

encrypted_msg -> contains recieved encrypted message

cover_text -> contains fetched cover_text

len_ct -> contains length of fetched cover text

len -> contains length of received encrypted message

i, j, k are integer variables

temp, sum, sub and mul are integer variables.

BEGIN

j=0;

SET len to encrypted_msg.length()

SET olen to len-ceil(len/7)

Fetching of cover text from received encrypted message

FOR i=0 to i < len

Begin

IF i%7==0 THEN

 cover_text[j]=encrypted_msg[i];

 j=j+1;

END IF

ELSE

 encrypted_message[j]=encrypted_msg[i];

 j=j+1;

END ELSE

End for loop

Fetching original message from encrypted message making use

of fetched cover text

FOR i=0 to i<(3 * len_ct)

temp= ASCII (cover_text[j]);

sum= (temp/10 + (temp modulo 10)) +10 ;

sub= (temp/10 - (temp modulo 10)) +10 ;

mul= (temp/10 * (temp modulo 10)) + 10 ;

IF (op is sum) THEN

BEGIN

 SET org_message[k] to char(xor(sum, ascii(

encrypted_message[i])));

 i=i+1;

 IF ([olen-k-1] > k) THEN

 SET org_message[olen-k-1] to char(

xor(sum, ascii (encrypted_message[i])));

 k=k+1;

 END IF

END IF

ELSE IF (op is sub) THEN

BEGIN

 i=i+1;

 SET org_message[k] to char(xor(sub, ascii(

encrypted_message[i])));

 i=i+1;

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1350
IJRITCC | March 2015, Available @ http://www.ijritcc.org

 IF ([olen-k-1] > k) THEN

 SET org_message[olen-k-1] to char(xor(sub,

ascii(encrypted_message[i])));

 k=k+1;

 END IF

END ELSE IF

ELSE (op is mul) THEN

BEGIN

 i=i+1;

 SET org_message[k] to char(xor(mul,

ascii(encrypted_message[i])));

 i=i+1;

 IF ([olen-k-1] > k) THEN

 SET org_message[olen-k-1] to char(xor

(mul, ascii (encrypted_message[i])));

 k=k+1;

 END IF

END ELSE

END FOR LOOP

j=j+1; // for loop now executes for next digit of cover text

END

E. Explanation for Encryption with example

1) Let us assume that our original plain text (original data) is

"Portal" which is shown in Fig. 1

Fig. 1 Plain Text

2) Generate random cover text on the basis of ceiling(n/6)

where n is the number of characters in the plain text. So for our

plain text only one character of cover text is required. Let us

assume that our cover text is "A" as shown in Fig. 2

Fig. 2 Random Cover Text

3) Get equivalent ASCII code for each character of cover text.

For our random cover text equivalent ASCII code would be as

shown in Fig. 3

Fig. 3 ASCII of cover text

4) Perform addition, subtraction and multiplication of digits of

ASCII code of each character of cover text. Due to subtraction

operation, there are chances of occurrence of negative decimal

values, so to avoid negative decimal values, add 10 to each of

the resulting decimal values as shown in Fig. 4. After this we

will have three digits/characters of cover text as shown in Fig.

5

Fig. 4 Performing mathematical calculations on digits of each character of

cover text

Fig. 5 Final cover text that would be used for xor operation later

5) Get equivalent ASCII code of plain text. For our plain text

equivalent ASCII code would be as shown in Fig. 6

Fig. 6 ASCII code of Plain text

6) Perform X-OR operation between ASCII codes of plain text

and ASCII codes of cover text parallely. One character of cover

text will encrypt two characters of plain text parallely i.e. one

from starting and another one from ending. Result of this X-OR

operation will have equal number of characters as that in our

original plain text/message/data and is known as encipher text

as shown in Fig. 7

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1351
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Fig. 7 Performing X-Or operation between cover text and plain text

7) Hiding/merging this obtained encipher text with random

cover text as shown in Fig. 8

Fig. 8 Merging obtained encipher text with our random cover text

8) Get equivalent characters from this ASCII codes as shown in

Fig. 9 which is our final encipher text/encrypted message ready

to be sent through communication channel to destination or to

be stored on cloud server.

Fig. 9 Final encipher text/encrypted message

F. Explanation for Decryption with example

1) Get final encipher text in a string array format as shown in

Fig. 10

Fig. 10 Encipher message

2) Get equivalent ASCII code of this encipher message or

encrypted message as shown in Fig. 11

Fig. 11 ASCII code of encipher message

3) Now, fetch cover text from this array of encipher text using

modulo 7 operation i.e. fetching every character at position 0,

7, 14, 21, 28, (i.e. 0 and multiple of 7) to get our random

cover text as shown in Fig. 12

Fig. 12 Fetched cover text

4) Next, perform addition, subtraction and multiplication of

digits of ASCII code of each character of cover text. To avoid

negative decimal values due to subtraction operation, add 10 to

every resulting decimal values as shown in Fig. 13.

Fig. 13 Performing mathematical calculations on digits of ASCII code of each

character of cover text

5) Final cover text that would be used for x-or operation later is

obtained after performing mathematical calculations on each

character of random cover text (as we have done in above step).

Our final cover text is as shown in Fig. 14

Fig. 14 ASCII code of final cover text

6) After fetching out cover text, remaining text is known as

encipher text or encrypted message which is then x-ored with

the final cover text. Perform X-OR operation between final

cover text and encrypted message or encipher text parallely.

One character of cover text will encrypt two characters of

encrypted message or encipher text parallely i.e. one from

starting and another one just next to it. Result of this X-OR

operation will have equal number of characters as that in our

encipher text(encrypted message) as shown in Fig. 15 and

would be our original message but in ASCII codes.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169
Volume: 3 Issue: 3 1344 - 1352

1352
IJRITCC | March 2015, Available @ http://www.ijritcc.org

Fig. 15 Performing x-or operation between cover text and encipher text

(encrypted message)

7) Get equivalent characters (as shown in Fig. 16) from ASCII

codes of original message obtained from x-or operation in

above step 6

Fig. 16 Original message/data/plain text

V. CONCLUSION

In this paper, we are presenting a useful new approach of text

based steganography for cloud data security. In our approach

we are performing simple addition, subtraction and

multiplication of digits of ASCII code of each character of

cover text. This process would generate three decimal values

for each character of cover text, one from addition, one from

subtraction and one from multiplication operation. Due to

subtraction operation there are chances of occurrence of

negative decimal values. So, to avoid negative values, add 10

to each decimal values. These new values generated are used

for encryption of plain text using X-OR operation. But before

encryption, generating equivalent ASCII code for our plain

text. Next performing encryption by parallely x-oring ASCII of

plain text and ASCII of generated values from cover text. Since

in our approach there are three basic airthmetic operation

performed on every character of cover text, so therefore, every

character will generate three numeric values each, such that,

each and every numeric value will encrypt two ASCII values of

plain text parallely. One encryption is done from beginning of

array of ASCII values of plain text and another one is done

from the end of array of ASCII values of plain text. So,

therefore, we can say that one character of cover text is able to

hide at most six characters of plain text. Thus reducing memory

allocation problem for cover text and also reducing the time

required for executing this approach by making use of

parallelism technique. Since, we know that basic airthmetic

operations and X-OR operation are fast to compute and we had

also used these so we can say that our approach executes faster

than any other existing approach of text based steganography.

Although our approach generates an absurd message or

information but still it would be better using this approach to

secure your commercial data or personal data or industrial

information on public cloud servers

REFERENCES

[1] W. Bender, N. Morimoto, D. Gruhl and A. Lu, “Techniques for data

hiding,” IBM Systems Journal, vol.35, pp. 313-336, 1996.

[2] F. A. P. Petitcolas and M. G. Kuhn, “Information hiding- a survey,”

In Proceedings of IEEE, vol.87, pp. 1062-1078, 1999.

[3] S. Bhattacharyya, G. Sanyal and I. Banerjee, “A novel approach of

secure text based steganography model using word mapping

method,” International Journal of Computer and Information

Engineering, volume 4, pp. 96-103, 2010.

[4] G. Sanyal, I. Banerjee and S. Bhattacharyya “Novel text

steganography through special code generation,” Int. Conf. on

Systemics, Cybernetics and Informatics, 2011, pp. 298-303.

[5] K. Rabah, “Steganography the art of hiding data in cover text,”

Information Technology Journal, vol.3, pp.245-269, 2004.

[6] D.Ghosh, S. Changder and N. C. Debnath, “A Linguistic approach

for text steganography through Indian text,” 2010 2nd Int. Conf. on

Computer Technology and Development, 2010, pp. 318-322.

[7] Sahil Kataria, Balvinder Singh, Tarun Kumar and Hardayal Singh

Shekhawat, "PDAC (Parallel Encryption with Digit Airthmetic of

Cover Text) Based Text Steganography", IEEE, 2014.

[8] M. S. Shahreza and M. H. S. Shahreza, ”A new approach to

Persian/Arabic language text steganography,” In 1st IEEE/ACIS Int.

Workshop on Component-Based Software Engineering, Software

Architecture and Reuse, 2006, pp. 310-315.

[9] M. H. S. Shahreza and M. S. Shahreza, ”A new synonym text

steganography,” Int. Conf. on Intelligent Information Hiding and

Multimedia Signal Processing, 2006, pp. 1524-1526.

[10] S.Chaudhary, P.Mathur, T.Kumar, "A Capital Shape Alphabet

Encoding(CASE) Based Text Steganography” , R. Sharma ,

Conference on Advances in Communication and Control Systems

2013 (CAC2S 2013) , India.

[11] William Stallings, “Cryptography and Network Security: Principles

and Practice 6/e” Prentice hall,2002,pp. 681.

[12] Kataria S. , Singh K. , Kumar T. , Nehra M.S. , "ECR (Encryption

with Cover Text and Reordering) based Text Steganography", IEEE

Second International Conference on Image Information

Processing(ICIIP), 2013.

http://www.ijritcc.org/

