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Abstract— Digital Twin (DT) has only been widely used since the   early 2000s. The concept of DT refers to the act of creating a  

computerized replica of a physical item or physical process. There is   the physical world, the cyber world, a bridge between them, and a 

portal from the cyber world to the physical world. The goal of DT is   to create an accurate digital replica of a previously existent physical 

object by combining AI, IoT, deep learning, and data analytics. Using   the virtual copy in real time, DTs attempt to describe the actions of the 

physical object. Battery based DT's viability as a solution to the   industry's growing problems of degradation evaluation, usage  

optimization, manufacturing irregularities, and possible second-life  applications, among others, are of fundamental importance. Through       the 

integration of real-time checking and DT elaboration, data can be   collected that could be used to determine which sensors/data used in a 

batteries to analyze their performance. This research proposes a          Linked Clustering Model using VGG 16 for Lithium-ion batteries   health 

condition monitoring (LCM-VGG-Li-ion-BHM). This work           explored the use of deep learning to extract battery information by           selecting 

the most important features gathered from the sensors. Data           from a digital twin analyzed using deep learning allowed us to         anticipate both 

typical and abnormal conditions, as well as those that   required closer attention. The proposed model when contrasted with            the existing models 

performs better in health condition monitoring.  

Keywords— Digital Twin, Lithium-ion Battery, Deep Learning ,  Battery Life, Health Condition, VGG 16, Device Security. 

 

 

I.  INTRODUCTION  

Mobile phones, laptops, energy storage systems, military 

gadgets, aircraft, etc. all benefit from using lithium-ion batteries 

as an alternative energy source [1]. As industrial technology 

develops at a quick pace and the level of product integration and 

intellectual capacity continues to rise, the use cases for lithium- 

ion batteries that become increasingly intricate [2]. Predictive 

maintenance is an effective method for increasing system 

reliability, reducing downtime, and elongating the useful life of 

lithium batteries [3]. Predictive maintenance relies heavily on 

information about the battery's health, therefore reliable methods 

of estimating the battery's remaining life span and identifying 

any difficulties it may be experiencing are crucial [4]. 

Predicting battery life and gauging reliability are two of the 

biggest challenges for designing uses of lithium-ion batteries [5]. 

The basic categories of existing methods are data-based, 

model-based, and data-model fusion. Multiple researchers, 

employing a modified long short-term memory (LSTM) 

neural network (NN) technique [6], created a prognostic 

framework for multiple batteries to better measure health state 

and anticipate battery life. Current lithium-ion battery life 

expectancy estimates are largely based on historical data and 

models, which may not be sufficient for exact preventative 

maintenance [7]. Beyond basic prior knowledge, a mix of real-

time and historical data could improve the current state of life 

prediction. 

Because of developments in sensor technology as well as 

information processing techniques, the concept of the digital 

twin provides ideas for and practical means to address these 

concerns. Digital twins, which incorporate digital technology 

and a simulated version of model technological advances to 

explore and anticipate the state of operation of physical space 

[8], provide an important basis for theory and technical 

assistance for the link and instantaneous relationship between 

virtual and physical space. Connecting the digital twin with 

requirements for product reliability takes advantage of its 

primary benefit, the exact and real-time mapping among virtual 
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and physical space [9]. The figure 1 illustrates the parts of a 

Lithium-ion battery. 

 

Fig 1: Components of Lithium-ion Battery 

A lithium-ion battery is a complex system due to its nonlinear 

and interconnecting internal features and the fact that its life is 

dependent on so many external factors. Significant challenges 

exist in the areas of accurate state estimation, quick charging, 

temperature control, and extending service life [10]. To 

determine DT, sensors measure the battery's voltage, current, 

temperature, etc., and this data is utilized to construct a structural 

model, an ageing approach, a thermal model, etc., in the virtual 

world [11]. Data monitoring, state estimation, health estimation, 

controlling the temperature, and other functions spanning the 

battery's entire life cycle can all be attained in real time with the 

help of AI, as can feedback control of the physical battery and 

simultaneous updates to the virtual model. The ability to 

visualize data from the battery is another way in which Battery 

DT improves battery transparency [12] and readability [13]. The 

development of digital and smart battery management systems 

can also be guided by this. The use of DT to manage complicated 

systems and a DT framework for battery infrastructure is 

depicted in Figure 2. 

 
Fig 2: DT in Battery Management System 

The standard definition of DT is a model that, given enough 

input data, can faithfully simulate the behavior of a real-world 

system [14]. This DT emphasizes the relevance and 

completeness of the statement's attempt to reproduce the 

behavior. Though DTs may at first glance appear to be carbon 

copies, it may not be able to replicate every aspect of human 

conduct exactly. For example, in battery DTs it is not required 

to digitally replicate the molecular, liquid [15], and structural 

actions of every cell component. DTs need not attempt a 1:1 

system replication. As a result, the feasibility of a full high- 

fidelity DT [16] that faithfully replicates the entire physical 

system and efficiently optimizes services while requiring as little 

in the way of resources as possible is still a work in progress [17]. 

The constraints on the precision of the model, the expense of the 

implementation, and the difficulty of the task will vary from one 

use case to the next [18]. Even less is known about DTs and how 

they develop during a person's lifetime [19]. Both the number of 

DTs required throughout a given lifespan nor the transitions and 

links that exist between DT's software components have been 

the subject of extensive study. 

Current lithium-ion battery life expectancy estimates are largely 

based on historical data and modeling [20], which may not be 

sufficient for exact preventative maintenance. Beyond basic 

prior knowledge, the combination of real-time and historical 

data could improve the current state of life prediction. As 

developments in sensor technology along with data analysis 

methods grow, the idea of the digital twin offers concepts and 

instruments for tackling the aforementioned difficulties [21]. 

Digital twins combine cutting-edge digital technology and 

virtual simulation of model technology to investigate and predict 

the operating condition of physical space in real time [22]. 

Connection with product reliability requirements is a natural 

use of the digital twin's core benefit of real-time and exact 

relationship between virtual and real space [23]. The 

technology of digital twins has been used to analyze and 

anticipate product performance decline, failure, and lifetime 

[24]. In order to track how well Lithium-ion batteries are doing, 

this research suggests a Linked Clustering Model trained on 

VGG 16. In this study, deep learning is used to extract battery 

statistics by choosing the most relevant sensor data features. 

II. LITERATURE SURVEY 

The concept of a DT has recently grown in favour among 

engineers due to the fact that it makes it easier to integrate 

physical and virtual components over a building's entire 

lifecycle. Machine learning (ML), 5G/6G, cloud computing, 

and the Internet of Things are only some of the enabling 

technologies that have accelerated the translation of DT from 

theory to practice. Dang et al. [1] proposed a DT framework for 

structural health monitoring that makes use of cloud computing 

and deep learning to perform real-time monitoring and 

preventative maintenance. The mathematical, finite-element, 

and machine learning submodels, along with the structural 

parts and device measurements, make up the framework. With 

the help of a cloud-based infrastructure and a user-friendly web 

app, the authors can enhance the flow of information between 

the actual building, the digital model, and the people working 
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on it. The feasibility of the proposed framework is 

demonstrated by case studies demonstrating the identification 

of damage to both model and real bridge structures using DL 

algorithms, with an accuracy of 92%. 

Due to their widespread use in a broad variety of electronics and 

the relatively high safety and reliability criteria in practice, 

researchers have delved deeply into the problem of estimating 

the state of health (SOH) of Lithium-ion batteries, which is 

directly related to the degradation of performance. For maximal 

capacity to be observed, a full charge/discharge cycle must be 

completed, as this is the case with end-of-cycle estimation, 

which is employed in the conventional SOH estimation 

methodology with digital twin. However, under dynamic 

operating conditions, partially discharged data cannot be used 

to reliably estimate SOH for Lithium-ion batteries in real time. Qin 

et al. [2] proposed a digital twin infrastructure for continuous 

SOH monitoring and model updates for batteries to address this 

information gap. There are three primary parts to the digital 

twin system proposed for SOH estimation in real time without 

a full discharge. To begin dealing with the variable training 

cycling data, the author first provided energy discrepancy-aware 

cycling synchronization, which aligns cycling data while 

ensuring the same data structure. Second, the degradation 

behavior across cycles is encoded into a time-attention SOH 

estimation model, which is then used to eliminate the impact of 

small sample sizes. As a result, the author examined the 

relevance of different training sample intervals over time. In 

order to provide real-time SOH estimation that is not dependent 

on a full discharge cycle, a data reconstruction method based 

on similarity analysis has been presented for online 

deployment. 

There has been a resurgence of interest in bringing Emotion 

Recognition (ER) to the healthcare sector as a result of recent 

advancements in ML and DL. The ER system needs to be 

combined with a real-time digital twin of the human in order to 

monitor, comprehend, and improve the physical entity's 

capabilities, and to provide constant input to improve quality of 

life and well-being for personalized healthcare. Some of the 

technical hurdles that must be traversed while creating such ER 

systems in real time include limited datasets, occlusion and 

lighting difficulties, discovering meaningful features, incorrect 

emotion categorization, and high implementation costs. To 

solve this issue, Subramanian et al. [3] designed a user-friendly, 

efficient, and adaptable ER system based on a webcam. In 

addition, the author provided a holistic architecture that 

combines an ER system with a digital twin setup, which 

facilitates the evaluation of the anticipated outcome prior to 

administering the most effective customized healthcare 

treatment, ideally before the onset of a potentially deadly 

condition. The proposed ER system had much shorter training 

times without reducing accuracy, yielding promising outcomes. 

Patient conditions may be monitored in real time, potentially 

fatal diseases can be identified early, and the most cutting-edge, 

effective therapies can be made available to hospitals. 

The intention of the suggested model is to fix the vulnerabilities 

of DTs in a CITS by employing a DL environment. The DL 

process has been modified; Convolutional Neural Network 

(CNN) and Support Vector Regression (SVR) have been 

implemented; and DTs technology has been added. Finally, a 

CNN-SVR based CITS DTs model is developed, and simulation 

experiments are used to analyze its effect on security. Lv et al.[4] 

proposed a method that improves upon state-of-the-art security 

prediction methods by producing results with an accuracy of 

90.43 percent. More so, in terms of Precision, Recall, and F1, 

the proposed method outperforms preexisting methods. The data 

transmission efficiency of the proposed method is compared to 

that of other algorithms currently in use. The proposed method 

ensures that critical messages will be responded to in less than 

1.8 seconds. However, it improves upon previous attempts at 

this task, maintaining high data transfer rates and providing 

drivers with optimal route planning despite varying road 

conditions. The transportation system's vulnerability to these 

factors is further examined. When the path guidance strategy is 

made more transparent, market penetration, following rate, and 

congestion are improved. Using the proposed DL algorithm 

model as an experimental starting point, researchers can work to 

improve urban transportation in ways that minimize data 

transmission delay, increase forecast accuracy, and fairly 

change routes to slow the spread of traffic jams. 

Smart structural health monitoring (SHM) for large-scale 

infrastructure is gaining traction in the engineering community 

as a result of its many advantages, such as early damage 

detection, the best maintenance plan, and low resource 

consumption. Despite its allure, this is a challenging   problem 

Since it requires the continuous processing of information 

from   a   massive number of sensors, all of which are imperfect 

due to noise. Therefore, Dang et al. [5] developed an end-to-

end framework that uses the inherent physical features of raw 

data with a sophisticated hybrid deep learning model (1-

DCNN- LSTM) made up of the CNN and the LSTM 

algorithms. Empirical mode decomposition, the discrete 

wavelet transform, and the autoregressive model are just a few 

of the signal processing techniques that are combined in this 

approach. The 1-DCNN-LSTM hybrid deep learning network 

draws on the strengths of both CNN and LSTM networks. The 

proposed method is as accurate as the powerful 2-D CNN in 

damage detection, and it is suitable for real-time SHM due to 

its lower time and memory complexity, as demonstrated across 

three case studies utilising both real and synthetic data sets. 

These days, sensors allow us to keep tabs on ships in real time. 

The importance of ship intelligence has been brought to the 

forefront by the easy availability of data. As ship intelligence 
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has progressed, so has the desire to use cutting-edge data-

driven solutions for optimizing operations. Ship motion data, 

which reflects the relationship positioning performance of the 

vessels, can be used to detect and isolate drift-offs caused by 

failed thrusters. Thruster failure detection and localization is 

framed as a time-series classification problem. A CNN is used 

by Han et al. [6] to learn the mapping between the motion 

sequence recorded and the present state of the thruster. CNN 

must first generate task-specific properties before it can 

identify raw data from time series sensors. The information 

used in this analysis was generated by the Offshore Simulation 

Centre AS's high- quality simulator. Experiments have proven 

that the proposed strategy is 95% effective in identifying and 

isolating malfunctioning thrusters. 

By facilitating the integration of more renewable power 

generation, improving the grid, and creating more flexible 

energy systems, lithium-ion batteries (LIB) play a critical role 

in the transition to a world with zero net carbon emissions. 

However, their short useful life and high price prevent broad 

adoption of battery technologies like renewable resource 

storage. The usable life of a battery is very sensitive to the 

materials structure, system design, and operating conditions, 

adding another layer of complexity to the challenge of 

controlling and managing battery systems. With digitalization 

and AI working together, battery management system 

awareness may be greatly increased, and battery storage units' 

performance can be optimized. Determine the battery's health, 

maintenance requirements, and expected lifespan with an 

accurate estimation of its state of charge (SOC). Zhao et al. [7] 

presented a digital twin-driven framework for SOC estimation 

in a li-ion battery by combining a LSTM with an extended 

Kalman filter (EKF) model. LSTM provides EKF with more 

accurate initial SOC estimates and impedance model data. 

Traditional efforts to study alternative energy vehicles have 

focused on lithium-ion batteries, despite the fact that their 

internal reactions are complex and that fundamental questions 

about things like battery ageing and safety remain unanswered. 

Due to its study and preliminary application in complex 

systems like aerospace, the digital twin can be used to 

overcome the existing bottleneck in battery research. Wang et 

al. [8] organized the evolution, fundamental ideas, and 

fundamental components of the digital twin, and it provides an 

overview of current research approaches and problems in 

battery modelling, state estimation, remaining useable life 

forecast, battery safety, and control. The author also described 

the digital modelling, real- time status estimation, dynamic 

charging control, dynamic temperature management, and 

dynamic equalisation control methods used in an intelligent 

battery management system. The future of digital twin 

development in the field of batteries is also outlined. Finally, 

the author reviewed the history and potential of smart battery 

management in a quick summary. 

It is vital to precisely anticipate the lifespan of lithium-ion 

batteries and evaluate their reliability for preventative 

maintenance purposes. It has always been difficult to 

accurately describe the dynamic and stochastic features of a 

battery's life. To guarantee the dependability of lithium-ion 

batteries, Yang et al. [9] described the concept of a digital twin 

and proposed employing one to estimate how many more 

cycles they will live          for. The capacity degradation model, the 

stochastic degradation   model, the life prediction model, and 

the reliability evaluation model are all created to define the 

unpredictable nature of battery degradation and the variation 

in the lifespan of multiple           cells. An adaptive evolution strategy 

is given for the digital twin model to improve prediction 

accuracy, and is then verified experimentally. Finally, battery 

life prediction, reliability assessment, and predictive 

maintenance built on the foundation   of digital twins are put 

into practice. The results validate the reliability digital twin 

across its whole service life. The error rate can be brought down 

to less than 5% by using the adaptive evolution technique. 

There can be no gains in battery system security, 

dependability, or efficiency without first addressing the issue 

of battery management. Weihan et al. [10] developed a cloud-

based battery management system to improve battery systems' 

processing speed and data storage capacity. IoT enables the 

construction of a digital twin for the battery system through 

the collection and transmission of data about batteries to the 

cloud, where it can be examined by battery diagnostic 

algorithms to offer insights about the charge and age of the 

batteries. Cloud-optimized methods for estimating the 

battery's state of charge and health are created, and the usage 

of similar circuit models in the digital twin for battery systems 

is explored. The adaptive extended H-infinity filter can be 

used to estimate the level of charge of lithium-ion and lead-

acid batteries even if there is a significant error in the 

initialization. In addition, the battery's capacity and power are 

monitored via an innovative state-of-health estimate algorithm 

based on particle swarm optimization. The functionality and 

stability of the cloud battery management system for both 

stationary and mobile applications are verified  by field and 

experimental testing of prototypes. 

III.  PROPOSED METHOD 

DT technology makes use of a plethora of sensors to obtain real- 

time measurements of the properties of physical entities, 

allowing for the establishment of a digital model in a simulated 

environment and the realization of dynamic simulation of the 

system. Data from dynamic simulations are analyzed using the 

AI algorithm to monitor the shifting patterns of underlying 

physical events [25]. With digital twin technology, not only can 

http://www.ijritcc.org/
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the technical state of high voltage electrical equipment be more 

accurately identified, but hidden links among various variables 

can be established, and new practical information may be 

gleaned through the use of Big Data analysis and machine 

learning techniques [26]. Even while battery research has gotten 

more thorough and refined in recent years, there are still many 

questions that need answers. Systems for battery management 

and battery balance management rely on an accurate assessment 

of the battery's present status to prevent overcharging and over 

discharging of a Li-ion battery [27]. The internal interactions of 

lithium-ion batteries are largely non-linear and tightly coupled, 

making for a challenging description. This indicates that DT 

could be used to address battery management difficulties at the 

state level [28].  

Big data refers to extremely large datasets that are difficult to 

manage with traditional database management systems. Big data 

systems should have the capabilities of integrating data, 

protecting data, managing data, analyzing data in real time, 

visualizing data, and keeping data private [29]. Twin data 

combines sensor data, model data, and data that has been 

combined virtually or in practice. Big data can sort through the 

mounds of data created by the DT to better characterize and 

forecast the consequences and processes of real occurrences. The 

DT model and big data are compatible with one another in terms 

of the data kinds and other metrics used. Between the realm of 

massive data in cyberspace and the world of particles and forces 

in the physical universe, the DT acts as a bridge [30]. The digital 

twin for lithium-ion battery reliability is established within the 

framework of digital twins. Key components of the digital twin 

include data gathering, data management, modeling 

management, simulation and calculation, modeling evolution, 

visualization, and so on. Disregard is given to the mechanical 

integrity of the device as a result of fatigue, cracking, and 

structural alterations caused by discharge and charging rates. 

The chemical breakdown of lithium ions is assumed to be the 

primary cause of their loss. 

Temperature plays a major role in the degradation of lithium-

ion battery capacity during cycling. It has been hypothesized 

that the current contributes to the degradation of batteries in a 

roundabout way, via the production of heat and an increase in 

temperature. In order to model DT, a battery's physical 

components must be modelled at multiple scales and updated 

in real time. Instead of using a collection of coupled physical 

models to represent the battery, different models are used to 

reflect its various characteristics. What causes the battery to 

age, how hot it gets, and how it conducts electricity are all 

things that should be made clear. Therefore, a thorough battery 

DT requires the initial construction of multiple models, each 

with their own unique strengths and limits. Hybridization may 

be necessary since each model will serve a distinct function in 

the battery DT system. 

Clustering is a method used in deep learning for classifying 

unlabeled data into meaningful categories. It is a method of 

organizing data by forming groups of records that share 

common characteristics, as one definition puts it. Possible 

related objects are kept together in a set that shares few or no 

characteristics with any other set. Clustering data based on a 

statistical model is called model-based clustering. A set of 

component models is supposed to have generated the observed 

data. Each model's probability distribution is a multivariate 

parametric distribution. Each observation is filed away in a 

specific group based on the subsystem that generated it. 

However, the parameters associated with each of the 

component distributed and the component that generates each 

observation are not known. The primary goal of proposed 

model learning is to identify the source of each data 

observation from the DT sensors, which provides a clustering 

of the data. In a perfect world, it would be reasonable to group 

together observations that share a common source. The 

proposed model framework is shown in Figure 3. 

 

 
 

Fig 3: Proposed Model Framework 

 

The processed text is provided as input to the cov1 layer with 

size as 3 x 3. After the text has been processed by a number of 

convolutional layers, it is next passed through filters with a very 

small responsive field: 3x3.The 1x1 convolution filters used in 
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one of the combinations can be thought of as a transformation 

that is linear of the input channels. To ensure that the spatial data 

points are maintained after convolution, the convolution stride is 

set to 1 data point and the spatial padding of convolution layer 

input to 1x1 matrix for 3x3 convolution layers. Some of the 

convolution layers are followed by five max-pooling layers, 

which do spatial pooling. A max-pooling operation is carried out 

on a 2x2 pixel window at a stride of 2. Following a stack of 

convolutional layers, three Fully-Connected (FC) layers are 

used: the first two have 4096 channels apiece, and the third uses 

1000 channels to achieve 2 way classification. The soft-max 

layer follows as the last one. All networks have the same layout 

for their completely connected layers. Every one of the hidden 

layers features a rectification (ReLU) non-linearity. The relevant 

query text is extracted by processing the entire big data returning 

the query text related information. This research proposes a 

Linked Clustering Model using VGG 16 for Lithium-ion 

batteries health condition monitoring (LCM-VGG-Li-ion-

BHM). The VGG 16 model data processing is shown in Figure 

4. 

 
Fig 4: VGG 16 Data Processing Levels 

 

Algorithm LCM-VGG-Li-ion-BHM 

{ 

Input: Li-ion Battery Data {LBset} 

Output: Lifetime Prediction LTset} 

Step-1: In the proposed model, Li-ion battery dataset is 

considered. To each sensor gathered data from a battery, an 

identity (ID) number is allocated. The ID is used to easily 

recognize the product and to identify the life time and fault. The 

ID allocation process is performed as 

𝑳𝑩𝑰𝑫[𝑴] = ∑𝒈𝒆𝒕𝒂𝒕𝒕𝒓(𝒃) + 𝒎𝒂𝒙𝒂𝒕𝒕𝒓𝒔𝒆𝒕(𝒃) + 𝒃𝒔𝒕𝒅𝒊𝒅(𝒃) + 𝑻𝒉

𝑴

𝒃=𝟏

 

                                                                                                                   (1) 

Here getattr() is used to extract the battery attributes and 

maxattrset extracts the maximum value in the attribute set and 

bstdid is the physical object manufacturer number and Th is 

threshold value. 

Step-2: A DT is an electronic copy created to be an exact 

duplicate of Li-ion battery. Sensors are installed in the object to 

collect data on its most important functions. Information on the 

object's energy output, temperature, environmental conditions, 

and more is gathered by these sensors. After being transmitted, 

this information is used to modify the digital replica. The DT 

creation of every physical Li-ion battery is performed as 

𝐷𝑻(𝑳𝑰𝑩𝑰𝑫[𝑴])  = ∑𝒈𝒆𝒕𝑳𝑩𝑰𝑫(𝒃)

𝑴

𝒃=𝟏

+ ∑
𝒔𝒆𝒕𝒔𝒊𝒎𝒎(𝑳𝑩𝑰𝑫(𝒃)) + 𝜸(𝒃) + 𝑵𝟐

𝒄𝒐𝒖𝒏𝒕(𝑳𝑩𝑰𝑫)

𝑴

𝒃=𝟏

 

           (2) 

Here LBID is gathered from the information stored and 

setsimm() is used to create a virtual environment of a current Li-

ion battery with sensors used for gathering the fluid levels and N 

sensors are used for creating a copy of sensors for information 

gathering like temperature, charge and discharge levels are 

considered from the sensors. 

Step-3: The sensors that are assembled in the batteries are used 

to gather the time at regular time intervals. These sensors will 

gather very useful sensitive information of Li-ion battery 

functionalities. The sensor data is transmitted to the central 

administrator for processing. The sensor data gathering and 

transmitting is performed as 

𝑺𝒅𝒂𝒕𝒂[𝑴] = ∏𝒈𝒆𝒕𝒕𝒆𝒎𝒑(𝒃) + 𝑫𝑻(𝜷(𝒃) + µ(𝒃) +
𝑹

𝜹(𝒃)
) + 𝒌

𝑴

𝒃=𝟏

 

                                                  (3) 

Here gettemp() is used to gather the temperature of each Li-ion 

battery at regular time intervals, β is used for considering the 

charge levels, µ is used for gathering the discharge level, δ is 

used to gather the fluid levels in the Li-ion battery. K is the 

difference between the charge and discharge levels. R is the 

initial fluid level of the battery. 

The data transmitting to central administrator is performed as 

𝑩𝒅𝒂𝒕𝒂 = ∑ 𝒈𝒆𝒕𝒎𝒂𝒙(𝑺𝒅𝒂𝒕𝒂(𝒃)) + 𝒈𝒆𝒕𝒎𝒊𝒏(𝑺𝒅𝒂𝒕𝒂(𝒃))

𝑴

𝒃=𝟏

− 𝝉(𝑺𝒅𝒂𝒕𝒂(𝒃)) +
𝑳𝒆𝒏(𝑫𝑻)

𝒍𝒆𝒏(𝑺𝒅𝒂𝒕𝒂)
 

               (4) 

τ is the null values in the dataset gathered by the senor. 

Step-4: For 3x3 convolution layers, keeping the spatial sensor 

data points after convolution requires setting the convolution 

stride to 1 data point and the spatial padding of convolution layer 

input to a 1x1 matrix. Five max-pooling layers, which do spatial 

pooling, follow some of the convolution layers. Max-pooling 

operation is performed on a 2x2 pixel window with a stride of 2. 

The VGG 16 model data point processing is performed as 

Initially the probability data points of the Li-ion battery is 

represented as 

 𝑩𝒅𝒂𝒕𝒂[𝑴] =

[
 
 
 
 
 

𝑫𝟏
𝑫𝟐
𝑫𝟑.........
𝑫𝑴]
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𝐷𝒑𝒓𝒐𝒄[𝑴] = ∑∑
𝐦𝐚𝐱 (𝑩𝒅𝒂𝒕𝒂(𝒃)

𝒍𝒆𝒏(𝑩𝒅𝒂𝒕𝒂)

𝒊

𝒋=𝟏

𝑴

𝒊=𝟏

+ 𝐥𝐢𝐦
𝒊→𝑴

(𝐦𝐚𝐱 (𝜷) +
𝐦𝐢𝐧 (µ)

𝑮
)

𝟐

+ 𝒉𝒊𝒅𝒍𝒚𝒓(𝑩𝒅𝒂𝒕𝒂(𝐦𝐚𝐱(𝜷(𝒃, 𝒃 + 𝟏))

+ 𝐦𝐚𝐱 (𝜹(𝒃, 𝒃 + 𝟏)) +
𝟐 ∗ 𝝎

𝒔𝒕𝒓𝒊𝒅𝒆
 

                             (5) 

Here ω is the kernel size, stride size is 1, hidlyr() considers the 

hidden layers for processing data points in each iterations. 

Step-5: Clustering is a machine learning-based method for 

categorizing sets of data objects into groups with shared features. 

Clustering is a technique for organizing large sensor data sets 

into smaller, more manageable subsets, each of which contains 

only items with comparable characteristics. Therefore, 

clustering can be viewed as a multi-goal optimization issue. The 

clustering technique and optimal settings for its parameters must 

be tailored to each data collection and its eventual application. 

The sensor data point clustering is performed as 

𝑪𝒍𝒖𝒔𝒕(𝑫𝒑𝒓𝒐𝒄[𝑴])

= ∏ 𝒈𝒆𝒕𝑽𝒂𝒍(𝑫𝒑𝒓𝒐𝒄(𝒃) +
𝒅𝒊𝒇𝒇(𝑫𝒑𝒓𝒐𝒄(𝒃, 𝒃 + 𝟏))

𝒍𝒆𝒏(𝑩𝒅𝒂𝒕𝒂)

𝑴

𝒃=𝟏

+ 𝐦𝐚𝐱 (𝜹(𝒃)) {
𝑽 ← 𝟏 𝒊𝒇𝐦𝐚𝐱(𝜷) 𝒂𝒏𝒅𝐦𝐢𝐧(µ) 𝒂𝒏𝒅 𝐦𝐚𝐱 (𝜹)

𝑽 ← 𝟎                                                 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

                (6) 

Step-6: The data point after performing clustering process, 

defective points in each cycle, normal points in each cycle are 

clustered. Based on each cycle battery performance, the lifetime 

of the battery and malfunctioning is detected. The process is 

performed as 

𝑳𝑻𝒔𝒆𝒕[𝑴] = ∏𝒈𝒆𝒕𝒎𝒂𝒙(𝑪𝒍𝒖𝒔𝒕(𝒃, 𝒃 + 𝟏))

𝑴

𝒃=𝟏

+ 𝒔𝒊𝒎𝒎(𝑪𝒍𝒖𝒔𝒕(𝒃, 𝒃 + 𝟏))

+
𝒎𝒂𝒙(𝜹) + 𝒎𝒂𝒙 (𝜷)

𝒍𝒆𝒏(𝑪𝒍𝒖𝒔𝒕)

− 𝒂𝒕𝒕𝒓(𝒎𝒊𝒏 (𝑫𝒑𝒓𝒐𝒄(𝒃))) 

  (7) 

} 

IV. RESULTS 

Batteries will play a crucial role in many aspects of our future 

low-carbon environment, including electric vehicles and 

massive storage of energy on the electrical grid. It is still 

challenging to keep these devices in good working order and to 

maximize their potential. Given the recent progress made in 

understanding battery performance/lifespan, the variety of 

testing methods, and the emergence of ML approaches, it is clear 

that there is opportunity for more intelligent control of battery 

systems. To build a DT model, an enormous amount of historical 

data is required. It is possible to increase electrochemical 

comprehension and system identification by combining data 

from multiple sources, the NASA battery data collection being 

just one of many examples. 

The development of a DT system to achieve dependable battery 

management requires these large volumes of offline data. But in 

the future, if a new type of battery lacks enough data, savvy 

algorithms will need to be used for transfer learning when 

building DT to expedite research on battery attributes. Another 

challenge to effective and trustworthy battery management is 

that the data collected in real-world applications is not as good 

as in laboratory conditions. The proposed model is implemented 

in Google Colab. The dataset is considered from the link 

https://www.kaggle.com/datasets/divyansh22/crystal-system-

properties-for-liion-batteries?select=lithium-

ion+batteries.csv.This research proposes a Linked Clustering 

Model using VGG 16 for Lithium-ion batteries health condition 

monitoring (LCM-VGG-Li-ion-BHM). The proposed model is 

compared with the traditional Digital Twin in Smart Battery 

Management Systems (DT-SBMS). The proposed model when 

contrasted with the traditional model performs better in battery 

health prediction. 

In the proposed model, the battery dataset is considered. For 

analysis, each battery data is allocated with an identity ID. This 

identity is used to analyze each batter data and the health status 

of battery and its life time and faulty batteries can be easily 

identified. The Li-ion Battery ID Allocation Time Levels of the 

proposed and existing models are shown in Table 1 and Figure 

5. 

Table 1: Li-ion Battery ID Allocation Time Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li-

ion-BHM Model 

DT-SBMS Model 

20000 9.4 17.3 

40000 9.7 17.6 

60000 10 18.1 

80000 10.3 18.4 

100000 10.6 18.6 

120000 11 19 

 
Fig 5: Li-ion Battery ID Allocation Time Levels 
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A physical object's functionality, features, and behavior are 

digitally replicated in the virtual environment to create a digital 

twin of the physical asset. Smart sensors that gather data from 

the product are used to produce a real-time digital depiction of 

the asset. The Table 2 and Figure 6 shows the Digital Twin 

Creation Accuracy Levels of the proposed and existing models. 

 

Table 2: Digital Twin Creation Accuracy Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li-

ion-BHM Model 

DT-SBMS Model 

20000 96.6 90 

40000 96.7 90.2 

60000 97.1 90.4 

80000 97.4 90.7 

100000 97.5 91 

120000 97.8 92 

 
Fig 6: Digital Twin Creation Accuracy Levels 

  

The sensors that are used to create a digital twin will gather 

data                          at regular time intervals. The data will be gathered by 

the central administrator for analysis. The data of each 

battery is gathered and this data is used to estimate the life 

time of the battery and for detection of faults. The Data 

Gathering Time Levels of the proposed and existing 

models are shown in Table 3 and Figure 7. 

 

Table 3: Data Gathering Time Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li- 

ion-BHM 

Model 

DT-SBMS 

Model 

20000 14.8 19 

40000 15.1 19.4 

60000 15.4 20 

80000 15.6 21 

100000 15.7 22 

120000 16 23 

 

 
Fig 7: Data Gathering Time Levels 

In contrast to AlexNet's huge receptive fields, VGG's are much 

smaller. Since the stride is 1, it employs a 3x3 grid for storing 

the values. With three ReLU units rather of one, the decision 

function can make finer distinctions. In addition, there are less 

parameters. The VGG 16 Model Data Processing Accuracy 

Levels of existing and proposed models are depicted in Table 4 

and Figure 8. 

 

Table 4: VGG 16 Model Data Processing Accuracy Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li- 

ion-BHM Model 

DT-SBMS 

Model 

20000 95.4 90.2 

40000 95.7 90.5 

60000 95.8 90.6 

80000 96.1 91 

100000 96.4 91.3 

120000 96.6 91.5 

 

 
Fig 8: VGG 16 Model Data Processing Accuracy Levels 

 

In databases with more than one observable variable, clustering 

helps to classify items into groups with shared characteristics. 

The key benefit of a clustered system is that it can recover 

automatically in the event of a breakdown. The term cluster 

analysis refers to the process of arranging battery data points so 
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that no two clusters contain data points that are less comparable 

to one another. Data is clustered based on criteria such minimum 

distances, data point densities, graphs, and other statistical 

distributions. The Data Point Linked Clustering Accuracy 

Levels of the proposed and existing models are shown in Table 

5 and Figure 9. 

 

Table 5: Data Point Linked Clustering Accuracy Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li-

ion-BHM Model 

DT-SBMS Model 

20000 96.8 91.5 

40000 97 92 

60000 97.3 92.5 

80000 97.5 93 

100000 97.8 93.5 

120000 98 94 

 

 
Fig 9: Data Point Linked Clustering Accuracy Levels 

In order to guarantee the secure and dependable functioning of 

the battery system, fault diagnosis plays a crucial role in the 

battery management system by identifying problems at an early 

stage and delivering control measures to mitigate fault impacts. 

The Table 6 and Figure 10 represents the Battery Fault 

Detection Time Levels of the existing and proposed models. 

 

Table 6: Battery Fault Detection Time Levels 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li- 

ion-BHM Model 

DT-SBMS 

Model 

20000 13.5 18.8 

40000 13.7 19.4 

60000 14 19.6 

80000 14.2 20.2 

100000 14.5 20.5 

120000 15 21 

 

 
Fig 10: Battery Fault Detection Time Level 

 

In data processing during numerous cycles, the VGG 16  

model process the sensor data in multiple cycles    for 

estimating the life time and for fault detection. The disorder in 

the data points will be used for accurate health status checking. 

The Battery Health Prediction Accuracy Levels of the 

proposed and existing models are shown in Table 7 and Figure 

11. 

Table 7: Battery Health Prediction Accuracy Levels 
 

Dataset Records 

Considered 

Models Considered 

LCM-VGG-Li- 

ion-BHM Model 

DT-SBMS 

Model 

20000 97.4 93 

40000 97.6 93.5 

60000 97.9 93.7 

80000 98.2 94.1 

100000 98.3 94.6 

120000 98.5 95 

 

 
Fig 11: Battery Health Prediction Accuracy Levels 
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V. CONCLUSION 

To all intents and purposes, DT technology can be used to 

produce and assemble batteries. Like an aeroplane factory, the   

DT-based virtual battery manufacturing line is efficient and 

effective. Several sensors placed along the production line or in   

the workshop might report their data to one central hub. Big data 

analysis is used to connect and analyze data among equipment 

and equipment, technology and system, and system       and system 

in order to fully digitalize and depict the power battery 

assembling and production process. The logistics of introducing 

battery DT were examined. One of the challenges in 

implementing battery DT is ensuring that the model has access 

to relevant operational data pertaining to the battery life time. 

Although there may be initial expenditures and lengthy 

implementation timeframes, standardizing the data integration 

method for battery DTs in the next years is required. There is 

currently no tried and true method for changing model 

parameters during battery use, which is the second major 

challenge in applying DT to batteries. The results of this research 

imply that, if the battery  

parameters are tracked, they will continue changing after a 

certain period of time and a certain number of cycles. 

Improvements in representation, performance estimation, 

behavioral estimations, and optimization strategies are some of 

the advantages of battery DTs that is performed in this research. 

This research proposes a Linked Clustering Model using VGG 

16 for Lithium-ion batteries health condition monitoring. This 

research shows that by analyzing the electrochemical 

consequences of the driving cycle on battery degradation, a 

battery DT can maximize the utilization of existing battery 

management system features. 
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