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Abstract- The growing adoption of Internet of Things (IoT) devices and the need for secure and scalable blockchain applications pose 

significant challenges in the realm of consensus protocols. This paper proposes a novel consensus mechanism called Federated Consensus for 

Proof of Authority (Fed-PoA), which combines the advantages of Proof of Authority (PoA) and federated learning to achieve secure and 

scalable IoT-Blockchain applications. The Fed-PoA ensures efficient data sharing, privacy preservation, and decentralized operation. 

Performance evaluation of this model in a simulated environment demonstrates superior convergence and memory usage compared to a 

representative work in this context.. 
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I. INTRODUCTION  

IoT networks make use of the fact that blockchain is a secure 

and decentralized technology in order to improve the 

functionality and security of IoT devices. The last two decades 

have seen a rise in interest in these applications, which have 

found applications in the fields of finance, logistics, and 

cybersecurity [1]. Conventional Proof of Work (PoW) and 

Proof of Stake (PoS) serve as well-known consensus procedures 

in blockchain networks; nevertheless, they confront issues 

relating to scalability, energy consumption, and centralization 

in their implementations.  Researchers have proposed many 

alternative consensus protocols, such as Proof of Authority 

(PoA) [2] and federated consensus [3], as a means of 

overcoming the constraints that have been identified. The Proof 

of Authority protocol (PoA) utilizes a reliable set of validators 

who are responsible for verifying transactions and creating new 

blocks. This method is more streamlined and centralized than 

others. Federated Consensus, on the other hand, enables several 

users to take part in the validation process without 

compromising decentralization or security. These protocols 

provide feasible solutions that solve the disadvantages of both 

Proof of Work and Proof of Stake. As a result, they enable 

increased scalability, energy efficiency, and governance within 

blockchain networks. 

In the context of PoA mechanisms, federated consensus can 

provide several significant advantages that help overcome 

limitations and enhance the overall functionality of IoT 

blockchain systems. It improves decentralization by involving 

multiple parties in the validation process, preventing excessive 

control and promoting fairness. Enhanced security is achieved 

through a distributed trust model, making it harder for malicious 

actors to manipulate the network. Better scalability is achieved 
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by distributing the computational load among multiple 

validators, enabling efficient operations as the system handles a 

larger volume of transactions [4]. Additionally, federated 

consensus introduces enhanced governance, allowing multiple 

parties to participate in decision-making, ensuring inclusivity 

and collaboration in managing the IoT blockchain system [5]. 

Currently, existing PoA mechanisms lack the incorporation of 

federated consensus, which can limit their potential in certain 

aspects, resulting in reduced decentralization and limited 

diversity in the validation process. 

Without federated consensus, PoA mechanisms rely 

on a fixed group of trusted validators to validate transactions 

and create blocks. While this approach ensures efficiency and 

security by minimizing the risk of malicious activity, it also 

introduces centralization concerns [6]. The power to validate 

transactions and make consensus decisions lies within a small 

group of validators, potentially leading to a concentration of 

control. This lack of decentralization can undermine the 

democratic and resilient nature of blockchain networks. 

Moreover, the absence of federated consensus restricts the 

participation of external parties in the validation process. In 

PoA systems, the validator set is typically predetermined, 

leaving little room for new entities to join and contribute to the 

network. The exclusion of external validators limits the 

diversity of perspectives and expertise, potentially hindering 

innovation and governance effectiveness. By integrating 

federated consensus into PoA mechanisms, these limitations 

can be mitigated. 

In this research, Fed-PoA mechanism addresses the 

limitations of existing PoA mechanisms by incorporating a 

federated consensus approach, ensuring both security and 

scalability in IoT-blockchain applications as below. 

1. By allowing a broader range of participants to 

contribute their expertise, Fed-PoA enhances the democratic 

nature of the consensus process and reduces the risks associated 

with centralization. 

2. In terms of security, Fed-PoA employs a distributed 

trust model by requiring consensus from a predefined subset of 

validators within the federated group. Consensus decisions are 

made based on the collective agreement of these validators, 

making it more difficult for malicious actors to manipulate the 

network.  

3. Regarding scalability, Fed-PoA leverages the 

federated model to distribute the validation workload among a 

larger number of validators. This distribution reduces the 

computational burden on individual validators and improves the 

overall scalability of the system.  

II. RELATED WORKS 

This section describes the recent works in the context of 

PoA and federated consensus. To further enhance the PoA 

protocol, recent research has proposed innovative mechanisms 

like the committee endorsing approach. This mechanism 

introduces a collaborative process in forming new blocks by 

requiring participation from multiple nodes. By involving 

additional nodes in the block creation process, the committee-

endorsing mechanism [7] aims to increase the decentralization 

and fault tolerance of the PoA consensus, addressing concerns 

about its centralized nature. This approach contributes to a more 

inclusive and distributed decision-making process within the 

network. While PoA offers advantages such as energy 

efficiency and security, its centralized nature remains a 

drawback. Validators in a PoA consensus network are 

preapproved and have the authority to validate transactions and 

create new blocks. This can lead to a concentration of power 

within a limited group of validators, potentially raising concerns 

about the system's resilience and censorship resistance [8]. 

However, it is important to note that in private and permissioned 

blockchain networks, where trust and known entities are 

crucial, the centralized nature of PoA can be acceptable and 

even desired to ensure a controlled and trusted environment. 

The implementation and integration of the new PoA consensus 

on a specific blockchain network, such as VeChainThor [9], 

would require careful planning and an implementation 

roadmap. This includes considering factors such as network 

compatibility, performance optimizations, security audits, and 

community acceptance. Proper implementation ensures the 

seamless adoption of the PoA consensus while maintaining the 

integrity and security of the existing blockchain ecosystem. 

Further, in a permissioned blockchain with PoA 

consensus, pre-authenticated nodes play a significant role [10]. 

These nodes are known and verified before participating in the 

consensus process, offering advantages such as high 

performance and enhanced security. However, the use of pre-

authenticated nodes can also raise concerns about centralization 

and privacy. While these nodes ensure a trusted environment 

and efficient transaction processing, the concentration of 

control and potential exposure of user credentials may impact 

the decentralized and privacy aspects of the blockchain 

network. In the realm of Industry 5.0, where rapid digital 

advancements are reshaping industrial landscapes, the 

FusionFedBlock [11] scheme emerges as a solution to the 

intricacies faced when integrating IoT into industrial 

infrastructures. This ground-breaking plan addresses important 

issues including centralization, privacy preservation, latency, 

and security by fusing the strength of blockchain with federated 

learning. Departments like Production, Quality Control, and 

Distribution operate at the federated layer and participate in 
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localized learning updates made possible by network 

automation, maintaining anonymity between entities. For safe 

and distributed storage, the system makes use of a Distributed 

Hash Table (DHT) at the cloud layer. The issue of detecting 

device failures in the IIoT networks is a critical concern. 

However, conventional methods necessitate the uploading of 

raw data from client devices to a centralized server for model 

training, potentially compromising the confidentiality of 

sensitive business data. To address this privacy concern, a 

blockchain based federated learning approach is proposed in 

[12] for detecting device failures in the IIoT. The platform 

architecture employs a Merkle tree structure to ensure verifiable 

data integrity, with each client storing the root on the 

blockchain. Additionally, a smart contract based mechanism is 

devised to incentivize client participation in the local model 

training process, taking into account the data size and centroid 

distance. The proposed approach is evaluated for its feasibility, 

accuracy, and performance, and the results demonstrate its 

effectiveness and potential in addressing the device failure 

detection problem in the IIoT. Recently, Issa et al. [13] have 

presented a comprehensive survey on federated consensus for 

securing IoT networks, highlighting its potential in addressing 

privacy, security, and scalability challenges in federated 

learning, providing a secure and decentralized platform. It 

emphasizes the benefits of this consensus, such as trustless and 

transparent systems, solving data silo issues, creating incentive 

mechanisms, and enabling diverse IoT applications. In this line, 

[14-15] and [16-17] also present insights into the potential of 

federated consensus for improving the efficiency and 

sustainability of manufacturing and healthcare industries. 

III. PROPOSED FED-POA 

The FED-PoA mechanism proposed in this research 

combines the concepts of reputation-based model, predictable 

block generation, committee-endorsing mechanism, and 

federated learning as described below. The FED-PoA 

architecture is illustrated with Figure 1. 

1. Pre-approved nodes: These are nodes that have undergone 

identity verification and are known and trusted participants 

in the network. 

2. Reputation-based model: This model is utilized for 

transaction validation, where the pre-approved nodes, acting 

as validators, assess the validity of incoming transactions. 

3. Predictable block generation: With this process, the 

validated transactions are organized into blocks in a 

predictable sequence. This allows for efficient and reliable 

block creation. 

4. Committee-endorsing mechanism: This mechanism 

involves the participation of other nodes besides the selected 

block producer, ensuring the formation of new blocks 

through a collaborative process. 

5. Local Model updates: The federated learning component, 

represented by the "Federated Learning" box, incorporates 

the concept of model aggregation. In this process, the pre-

approved nodes perform local model updates based on their 

respective datasets. 

6. Global Model updates: The updated local models from each 

pre-approved node are aggregated to create a global model. 

This global model is then utilized for further transaction 

validation and block generation in the reputation-based 

model and predictable block generation stages, respectively. 

A. Reputation-based model 

In the reputation based model of the Fed-PoA framework, 

each node's reputation score, denoted as 𝑅𝑆𝑖 , is determined 

based on its past performance and behavior in the network. Let 

𝑁 represent the set of nodes in the network. The reputation score 

of node 𝑖 is calculated using a function 𝑓 that considers various 

metrics, such as the number of validated transactions, accuracy 

of validations, and consistency of consensus decisions as in (1), 

where 𝑚𝑖 = [𝑚1, 𝑚2, … , 𝑚𝑀] represents the vector of metrics 

associated with node 𝑖 and 𝑤𝑗  denotes the weight assigned to 

each metric m𝑖𝑗. 

𝑅𝑆𝑖= 𝑓(𝑚𝑖) = ∑  𝑀
𝑗=1 𝑤𝑗 ⋅ m𝑖𝑗   (1) 

The weights 𝑤𝑗  reflect the importance or significance of 

each metric in determining the reputation score and calculated 

as in (2). 

 

Fig.1. FED-Poa Architecture 

𝑤𝑗 =
|𝑚 𝑗|

∑  𝑀
𝑘=1 |𝑚 𝑘|

   (2) 

These weights can be predetermined based on the specific 

requirements and priorities of the PoA network or can be 

dynamically adjusted based on the evolving network 

conditions. Each metric m𝑖𝑗   represents a specific aspect of a 

node's performance, behavior, or contribution to the network. 

Examples of metrics could include the number of validated 

transactions, accuracy of validations, consistency of consensus 
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decisions, response time, or participation level in the consensus 

process.  

By assigning appropriate weights to the metrics, the 

function 𝑓 aggregates the individual metric values to calculate 

the reputation score 𝑅𝑆𝑖  for each node. The reputation scores 

provide a quantitative measure of a node's authority and 

trustworthiness in the PoA network and influence its role in the 

consensus process. These scores are dynamically updated over 

time as nodes participate in the PoA consensus process. During 

consensus rounds, the nodes exchange reputation scores and 

adjust them based on the consensus outcomes and the opinions 

of other validators. This ensures that the reputation scores 

reflect the nodes' authority and reliability within the network. 

Nodes with higher reputation scores are given more influence 

in the PoA consensus process. They have a greater probability 

of being selected as validators and can have a stronger impact 

on the final consensus decisions. This mechanism aligns with 

the PoA concept where authority is granted to nodes that have 

proven their trustworthiness and ability to contribute to the 

consensus. To maintain the integrity of the reputation based 

model, safeguards can be implemented to prevent manipulation 

or gaming of reputation scores. For instance, reputation scores 

can be verified and validated by multiple trusted nodes in the 

PoA network to ensure accuracy and fairness. By incorporating 

the reputation based model within the PoA mechanism, the Fed-

PoA framework promotes trust, reliability, and accountability 

among participating nodes. It incentivizes good behavior and 

discourages malicious or unreliable actions, thereby enhancing 

the security and efficiency of the PoA consensus process. 

B. Predictable block generation 

The predictable block generation process in the Fed-PoA 

mechanism follows a predetermined order based on the position 

of each validator in the sequence. Let N be the total number of 

validators in the network. Each validator 𝑖 , where 𝑖 ∈

1,2, . . . , 𝑁, has a specific turn or position in the block generation 

sequence. During their turn, validator 𝑖  is responsible for 

creating a new block by including a set of verified transactions. 

This can be represented as 𝐵𝑙𝑜𝑐𝑘𝑖 = {𝑡𝑛1, 𝑡𝑛2, . . . , 𝑡𝑛𝑘}, where 

𝐵𝑙𝑜𝑐𝑘𝑖 represents the block created by validator 𝑖, and 𝑡𝑛1 to 

𝑡𝑛𝑘 are the verified transactions included in the block. Once the 

validator 𝑖 has created the block, it is added to the blockchain, 

and the process moves on to the next validator in the sequence, 

𝑖 + 1. By following this predictable block generation process, 

the Fed-PoA mechanism ensures that each validator knows 

when it is their turn to generate a block. This eliminates the need 

for extensive computational resources or competitive mining, as 

seen in other consensus mechanisms like PoW. As a result, the 

Fed-PoA mechanism can achieve higher transaction throughput 

and greater efficiency in block creation. 

C.  Committee Endorsing Mechanism 

The Committee Endorsement Mechanism (CEA)  is a 

proposed enhancement to the PoA consensus algorithm that 

fundamentally changes the way a block is created. This 

approach introduces two new concepts: the Endorsing 

Committee and the Endorsing Threshold. The Endorsing 

Committee is a group of nodes that are randomly selected from 

a pool of authorized nodes to endorse the new block. The 

Endorsing Threshold is a minimum number of endorsements 

required for a new block to be considered valid. In this way, the 

Committee Endorsing Mechanism helps to increase the security 

and decentralization of PoA by involving more nodes in the 

block creation process. 

The algorithm starts with the selected block producer 

creating a new block and broadcasting it to the network. Then, 

a committee of nodes is randomly selected from the pool of 

authorized nodes. Each node in the committee evaluates the new 

block based on their own criteria. If the number of 

endorsements received by the new block is greater than or equal 

to the endorsing threshold T, the block is considered valid and 

added to the blockchain. Otherwise, the block is rejected, and 

the process starts again with a new block producer. 

Algorithm: Committee Endorsement 

Inputs: 

• Selected block producer 𝐵 

• Pool of authorized nodes 𝑃 

• Endorsing threshold 𝑇 

• Committee Pool 𝑃 

Outputs: 

•  “Valid” or “Invalid block” 

Steps: 

1. CreateNewBlock(block 𝑏) 

2. 𝐶  RandomlySelectCommittee(pool 𝑃) 

3. endorsements  0 

4. for each node 𝑖 ∈ 𝐶 do 

 if EvaluateBlock(node, block) then 

         endorsements endorsements + 1 

 end if 

 if endorsements >= T then 

     AddBlockToBlockchain(block) 

     Output "Valid block" 

   else 

     Output "Invalid block" 

   end if 
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In this algorithm, CreateNewBlock(block) creates a new 

block and broadcasts it to the network, 

RandomlySelectCommittee(pool, committee_size) is a function 

that randomly selects a committee of specified size from the 

pool of authorized nodes, EvaluateBlock(node, block) is a 

function that evaluates the new block based on the criteria 

defined by each node in the committee and  

AddBlockToBlockchain(block) is a function that adds the valid 

block to the blockchain. 

D. Adaptive Federated Learning 

The adaptive federated learning algorithm enables the 

training of a global machine learning model across 

decentralized devices or servers, while ensuring data privacy. 

This algorithm involves initializing the global model, selecting 

a subset of clients for each training round, distributing the 

current global model to the selected clients, conducting local 

model training on each client's dataset, aggregating the updated 

models from all clients to refine the global model, calculating 

the entropy of the updated global model, and terminating the 

training process if the entropy falls below a predetermined 

threshold. This collaborative approach to model training 

promotes data privacy, decentralization, and improved machine 

learning outcomes. 

Algorithm: Adaptive Federated Learning 

Input: 

• Global model 𝑊 

• List of participating clients 𝐶 

• Number of training rounds 𝑇 

• Entropy threshold 𝜃 

Output:  

• Trained global model 𝑊trained 

Steps: 

1. Initialize global model 𝑊 

2. For each training round 𝑡 from 1 to 𝑇 do:  

a. Select a subset of clients 𝐶t  from 𝐶 

b. For each client 𝑐 ∈ 𝐶𝑡 do:  

i. Assign the global model 𝑊 to the client's 

local model 𝑊c   

ii. Train the local model 𝑊c  on the client's 

local dataset 

iii. Send the updated local model back to the 

server 

c. Aggregate the updated local models from all 

clients in 𝐶t  to update the global model 𝑊 

d. Calculate the entropy of the updated global 

model 

e. If 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 <  𝜃, stop training and return 

the trained global model: 

i.  𝑊trained ← 𝑊 

3. Return the trained global model: 𝑊trained 

IV. PERFORMANCE EVALUATION 

This section presents the experimental setup to implement 

the proposed Fed-PoA mechanism and calculate its 

performance.  

A. Experimental Results 

The experimental setup involved a comprehensive 

evaluation of the proposed FL and consensus schemes using 

specific configurations of hardware and software. The hardware 

setup included high-performance servers equipped with Intel 

Xeon processors and Nvidia Tesla V100 GPUs, edge devices 

with Intel Core i7 processors and Nvidia GeForce RTX 2080 

GPUs, and resource-constrained IoT devices with ARM 

Cortex-M4 processors. The software stack utilized TensorFlow 

2.5 as the primary machine learning framework, along with 

Python 3.8, NumPy, and scikit-learn for data preprocessing, 

model training, and evaluation. 

The experiments were conducted with varying numbers of 

participating clients, ranging from 100 to 500, to assess the 

scalability. The learning rate was set to 0.01, the batch size was 

chosen as 32, and the models were trained for 100 epochs. Real-

time Device-to-device (D2D) connectivity was simulated using 

a custom network simulator, which incorporated realistic 

latency and packet loss characteristics based on empirical 

measurements. 

To ensure the reliability of results, each experiment was 

repeated five times, and the average performance metrics, 

including training accuracy, validation accuracy, and 

convergence time, were recorded. The experiments were 

terminated if the models failed to show significant improvement 

in validation accuracy after 50 epochs. By considering specific 

configurations of hardware and software, the study provided 

valuable insights into the performance and scalability of the FL 

and consensus schemes under realistic conditions. 

B. Experimental Results 

The performance of the Fed-PoA  is assessed  on several key 

metrics, including the convergence rate, communication 

overhead, power consumption, and memory usage. The 

convergence rate, 𝑐𝑟 measures the speed at which the model 

converges to a stable solution. It is calculated as the number of 

epochs required for the model to reach a certain level of 
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accuracy, 𝑛𝑒𝑝𝑜𝑐ℎ𝑠. The communication overhead, 𝑐oh measures 

the amount of data transmitted between clients and the central 

server during training. It is calculated as the total amount of data 

transmitted, 𝑑total during the training epochs as in (3). 

𝑐oh =
𝑑total  

𝑛epochs
   (3) 

The power consumption 𝑝𝑐 measures the amount of energy 

consumed by each client during training. It is calculated as the 

product of the power consumed per unit time, 𝑝unit , and the 

training time, 𝑡train as in (4). 

𝑝𝑐 = 𝑝unit ⋅ 𝑡train  (4) 

Memory usage, denoted as 𝑀𝑈, quantifies the amount of 

memory used by each client during the training process. It is 

calculated as the maximum memory usage, denoted as 𝑀max, 

observed during training. 

The asymptotic error constant α, or rate of convergence, is a 

quantity that represents how quickly the system approaches 

consensus. It is calculated as the limit of the ratio of the error at 

each iteration to the error at the previous iteration as in (5). 

Here, 𝐸𝑘 denotes the error at iteration 𝑘, and 𝐸𝑘 − 1 is the error 

at the previous iteration 𝑘 − 1.  

𝛼 = 𝑙𝑖𝑚
𝑘→∞

𝐸𝑘−1

𝐸𝑘
   (5) 

Table 1. Fed-PoA Performance Metrics 

No. of 

 Nodes nepochs Coh 

Pc 

watts (W) 

MU 

(MB) α  

100 50 1.5 57.3 32.6 0.01 

200 70 2.2 61.9 59.2 0.07 

300 90 3.4 75.7 61.2 0.21 

400 115 4.9 88.5 75.3 0.35 

500 140 5.2 104.6 98.7 0.41 

 

It can be observed that as the number of nodes increases, the 

convergence rate tends to increase as well. Additionally, both 

power consumption and memory usage also show an increasing 

trend with an increase in the number of nodes. This indicates 

that as the network size grows, more computational resources 

are required, resulting in higher power consumption and 

memory usage.  

An investigation of the variations in the metrics obtained from 

networks with varying numbers of nodes was carried out by 

means of a statistical study. To determine whether or whether 

the differences between the node groups are statistically 

significant, a one-way analysis of variance (ANOVA) was 

carried out. According to the findings, there was a discernible 

relationship between the number of nodes and the pace of 

convergence (F(4, 15) = 3.82, p = 0.027). Post-hoc pairwise 

comparisons using Tukey's honestly significant difference 

(HSD) test indicated that the mean convergence rate for the 

group with 500 nodes (M = 5.2) was significantly different from 

the groups with 100 nodes (M = 1.5) and 200 nodes (M = 2.2), 

with p-values of 0.012 and 0.034, respectively. This indicated 

that the mean convergence rate for the group with 500 nodes 

was significantly higher than the mean convergence rate for the 

group with 100 nodes. However, there were no discernible 

variations detected between the node groups with regard to the 

amount of power used (F(4, 15) = 1.58, p = 0.240) or the amount 

of memory utilized (F(4, 15) = 2.12, p = 0.118). Based on these 

data, it seems that the number of nodes has an effect on the 

convergence rate; nevertheless, the amount of power used and 

the amount of memory used are essentially stable regardless of 

the layout of the nodes.    

Further, the relationship between θ and  α  is studied to 

understand the impact of the entropy threshold on the 

convergence speed of Fed-PoA. This analysis depicted in 

Figure 2 shows an increase in α with respect to θ for different 

sizes of the network. It is observed that as the θ increases, α also 

increases, indicating a less accurate consensus. Furthermore, 

the effect of the entropy threshold on the error becomes more 

pronounced for larger networks with more nodes. This can be 

due to the fact that a higher entropy threshold leads to a larger 

search space, which makes it more difficult for the optimization 

algorithm to find the optimal solution. Thus, the choice of an 

appropriate entropy threshold should consider the trade-off 

between desired accuracy and computational/network 

constraints.  

 

Fig.2. Entropy Threshold vs Asymptotic Error 

The empirical evaluation of the model reveals that the 

combination of federated consensus and the PoA approach 

offers improved convergence rate, reduced communication 

overhead, lower power consumption, and efficient memory 

usage, making it a promising solution for collaborative and 

resource-constrained environments. 
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V. CONCLUSION 

The Fed-PoA introduced in this paper, effectively tackles 

the consensus challenges in IoT-Blockchain applications 

through a synergistic combination of PoA and federated 

learning. This protocol enables efficient data sharing and 

privacy preservation and also ensures decentralized operation, 

making it a compelling choice for secure and scalable IoT-

Blockchain applications. The performance evaluation of Fed-

PoA showcases its superior convergence and memory usage 

compared to existing approaches, underscoring its potential in 

achieving efficient and dependable consensus. The  Fed-PoA 

serves as a valuable contribution to the advancement of secure 

and scalable systems for IoT-Blockchain, offering a promising 

solution to address the intricate intricacies of consensus in this 

domain. By exploring and implementing it in real-world 

scenarios, Fed-PoA can drive the advancement of IoT-

Blockchain technologies, revolutionizing industries such as 

healthcare, smart cities, and industrial IoT. 
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