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Abstract— Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential 

usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate 

the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization 

method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a 

balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used. 

Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope 

for improvement in finding the optimal solutions using its exploitation.  This research introduces an efficient task allocation method as a novel 

load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired 

by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response 

time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA, 

CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions 

of up to 75%, and makespan improvements of up to 80%. 

Keywords- Fog Computing; Resource Management; Task Scheduling; Whale optimization; Load Balancer. 

 

 

I.  INTRODUCTION 

The Internet of Things (IoT) significantly influences network 

and computing technologies in Industry 5.0 and succeeding 

generations. IoT gives access to a wide number of applications, 

including but not limited to healthcare, traffic management, and 

self-driving cars, through its integrated components like sensors 

and network connectivity to a wide range of gadgets and 

household objects. [1][2]. To keep up with the pace of 

technology, smart devices generate a wide range of data that 

must be processed and computed quickly for clients, and end 

users. By reducing latency, Fog computing promotes IoT and 

complements cloud computing [3] [4]. Fog nodes extend the 

cloud to the network's edge, bringing it closer to the source of 

IoT data. To address issues such as latency, energy efficiency, 

and security, data is processed at Fog nodes before being 

transmitted to the cloud for high storage and compute 

requirements. Cloud and Fog evaluation paradigms are required 

for all types of IoT data. The Fog-Cloud paradigm is now one of 

the best solutions available for increased Quality of Service 

(QoS) requirements [5][6]. Unlike a cloud system, a Fog system 

is constantly constrained by processing capability. Many IoT 

applications are latency-sensitive and require different levels of 

makespan and response time. Due to latency issues, scheduling, 

and management of these types of applications become difficult 

and unacceptable in industries like healthcare, autonomous 

driving, and real-time data processing requirements in the 

gaming industry. Resource scheduling is one of the solutions to 

the issues of performance parameters in Fog-Cloud systems 

[7][8]. The use of cloud platforms raises the cost of 

communication and computation for the IoT applications. Thus, 

a balanced tradeoff needs to be maintained among the challenges 

of such systems.  
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Cloud-Fog based platform service companies offer a variety 

of services at varying prices. Cloud services have their own costs 

based on user demand, with different levels of constraint for 

consumers. The cost of adopting a Fog-Cloud system may be 

affected by two factors: computation time and storage. Many 

present strategies are incapable of balancing cost and QoS 

factors. Therefore, this study investigates the significance of 

tasks in a Fog-Cloud system concerning both QoS and cost. We 

introduce a hybrid optimization algorithm that combines the 

Whale optimization algorithm [9] with the Earthworm 

optimization algorithm [10] for the efficient scheduling of tasks. 

The suggested technique is intended to achieve job scheduling 

with cost savings and efficient QoS achievement.  

The primary contribution of this study can be summarized as 

follows: 

1. A hybrid optimization algorithm, called WEOA (Whale-

Earthworm Optimization Algorithm), designed to enhance 

resource management within the Fog-Cloud environment 

efficiently is introduced. 

2. The exploration phase and convergence speed are improved 

for optimal resource allocations. 

3. Proposing and designing autonomous “Load-balancer based 

task Allocation Framework” as per the three-layer 

architecture of Fog environment. 

This work is organized into several sections: Section 2 

provides a summary of previous resource management 

techniques in fog computing, while Section 3 outlines the 

System Architecture for this domain. Section 4 delves into the 

problem formulation within the Fog environment, and Section 5 

elaborates on the problem-to-solution transition, introducing the 

proposed algorithm, and Section 6 presents the results. Finally, 

in Section 7, the study concludes. 

II.  LITERATURE REVIEW 

Kumar et al. [10] have proposed a hybrid electric 

earthworm optimization algorithm to tackle the problem of 

efficiently scheduling jobs in a Fog-cloud environment to 

improve QoS for IoT applications in the IoT-Fog-cloud 

framework. The Electric fish and earthworm optimization 

method is used by researchers to reduce system latency and 

energy consumption. Both active and passive electrolocation 

methods are utilized to enhance the position-updating process, 

thus improving the overall efficiency of the suggested approach. 

This approach applies to real-world smart cities and offers 

valuable utility in vehicle network management. The authors 

compared cost, makespan, execution time, and energy 

consumption and found that their method outperformed previous 

procedures. The proposed approach is tested on real-world 

workloads from CEA-CURIE and HPC2N. This work lacks an 

offloading mechanism and a workload management task.

 Sarrafzade et al. [11] have suggested a genetic form 

algorithm for service placement in the Fog environment. The 

proposed method is a penalty-based method for determining 

latency and time usage in cloud installations. The writers also 

took the proximity of applications into account. A priority value 

is identified by the chromosome-selection procedure, which 

estimates the proximity of the dependent component. The 

proposed technique successfully reduced costs, network 

utilization, and energy consumption. The work's restriction is 

that time and cost measurements may be incorporated into this 

research. Yadav et al. [12] have developed a modified fireworks 

algorithm for reducing makespan and cost. Researchers 

employed opposition-based learning and differential evaluation 

methodologies with a modified firework algorithm. For the 

efficiency of an algorithm, researchers have concentrated on the 

exploration and exploitation phases. Con-vergence can be 

increased by incorporating both phases and algorithms cannot 

become trapped in local optima. The proposed strategy is 

compared to the existing meta-heuristic technique on parameter 

cost and makespan, and its importance is verified. Work 

limitations the makespan metric still needs improvement. The 

Hidden Markov Model was explored by Javaheri et al. [13] for 

anticipating available Fog nodes for incoming requests, 

workflows that have missed the deadline, and offloading jobs 

from the Fog to the cloud. The Baum-Welch algorithm is utilized 

for HMM training, and the Viterbi technique is used to discover 

accessible Fog nodes. DO-HHO (Discrete-opposition-Harris 

Hawks optimization algorithm) has been presented by 

researchers for effective workflow scheduling with the 

parameters cost, deadline, and energy. The proposed technique 

successfully decreases delay, workload offloading, and SLA 

violations. The research's shortcoming is the high amount of 

energy squandered in this procedure. Abu-Amssimir et al. [14] 

have suggested a greedy-edge-placement strategy for latency-

sensitive IoT applications that minimize delay. The proposed 

technique efficiently maximizes throughput while minimizing 

delay. Researchers are working on the greedy-delay-minimizing 

applications selection and placement step for the suggested 

strategy. The selection stage achieved lower end-to-end latency, 

as did the placement stage, which used the DFS algorithm to pick 

Fog nodes for module application placement. The suggested 

approach successfully provides high-quality services while 

lowering net-work bandwidth, latency, and energy usage. The 

work's weakness is that reaction time may need to be calculated 

to demonstrate network efficiency. Maatoug et al. [15] 

developed a Discrete-event-system-specification mechanism for 

smart building energy management. Different sub-models are 

developed in the suggested technique by connecting multiple 

objects in the building that create the Fog environment. The 

developed technique effectively reduces latency and energy 

usage. The proposed model can be implemented by eliminating 

or adding a sub-model that aids in the achievement of efficient 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 10 

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023 

___________________________________________________________________________________________________________________ 
 

 

    891 
IJRITCC | October 2023, Available @ http://www.ijritcc.org 

QOS in a Fog environment. Some essential QoS metrics, such as 

makespan and reaction time, are absent and insufficient to ensure 

QoS. Ogundoyin et al. [16] have described a hybrid 

optimization algorithm based on the Particle Swarm 

Optimization and the Firefly algorithm. Researchers discussed 

the issue of sojourn rate and trust, energy usage, and node 

capacity. The liner-sum-weight approach is employed to 

consolidate an individual objective function, and the best-worst 

method is utilized to establish the weight vector for the aggregate 

function. The proposed technique surpasses traditional methods 

in performance. Hussain et al. [17] presented a novel vehicular 

fog computation approach. The authors considered the delay 

issue as well as energy-sensitive automobile applications. 

Researchers concentrated on data offloading from automotive 

devices to RSUs and BSs (base stations). The authors suggested 

a multi-objective optimization problem named Swarm-

Optimized Non-dominated sorting-Genetic algorithm (SONG) 

in this paper. When compared to the NSGA-2 and SMPSO 

approaches, the new approach gives higher quality than previous 

strategies. The network's response time improves just somewhat 

over previous solutions. Ghobaei-Arani et al. [18] have 

developed a meta-heuristic approach for enhanced service 

allocation. The authors presented a whale optimization method 

for improved resource management in the Cloud-Fog system, 

and they used throughput and energy consumption as objective 

functions to determine the system's efficiency. The simulation 

findings show that the proposed strategy minimizes delay and 

energy consumption while improving resource utilization. Some 

drawbacks in the currently used methodologies are observed and 

are detailed below on various parameters examined: 

1. A lack of variety in the workload: To evaluate task 

scheduling algorithms' efficacy and flexibility, a variety of 

workloads and application kinds should be used [10] [17]. 

However, some studies could concentrate on workload 

characteristics or neglect to take a variety of application 

requirements into account. 

2. Little Attention Paid to Communication Overhead: In cloud-

fog environments, effective task scheduling must consider 

communication overhead between fog nodes and the cloud 

as well as between fog nodes. Some publications, however, 

might not sufficiently handle this issue or might use 

oversimplifying suppositions that don't account for actual 

communication limitations [11][14][15][17]. 

3. Inadequate Resource Management Methodologies: Effective 

task scheduling should include resource management 

techniques like load balancing, fault tolerance, and 

scalability in addition to job allocation. Some works might 

ignore these factors or offer scant guidance on how to 

manage them in a cloud-fog architecture 

[11][12][14][15][16]. 

4. Cost and energy efficiency trade-offs: Finding the ideal 

balance between cost and energy efficiency can be difficult, 

although both are crucial considerations in task scheduling. 

Studies that place too much emphasis on one feature while 

disregarding the other may produce less-than-ideal results 

[13][15] [16][17][18].   

 

We present the notations used in our suggested solution as 

seen in Table 1. 

TABLE I.  NOTATION AND DEFINITIONS 

Notation Definition 

 
  

 

Finishing time 

of the Task 

 
  

 

Starting time of 
the Task 

       
Wttime 

Waiting time 

       T 
Current 

iteration 

 
  

 

Distance 

Tmax 
Maximum 

iteration 

NP 
Earthworm 

Population Size 

nKEW 
Number of 
earthworms 

ψComp-cost 
Computation 

Cost 

ψComm-cost 
Communication 

Cost 

ψcost(m) 
Cost of 

Memory 

ψcost(p) Cost of CPU 

ψcost(b) 
Cost of 

Bandwidth 

MS Makespan 

RT Response time 

Wt time Waiting Time 

ART 
Average 

Response time 

 

III. SYSTEM ARCHITECTURE  

The three-tier framework of a cloud-Fog-IoT computing 

system is depicted in Figure 1. The first-tier layer is made up of 

(D1, D2,... Dn) IoT devices, and it contains data that will be 

transferred to the top layer for processing. The intermediate Fog 

layer (f1, f2...fn) has mini servers with limited storage and 

processing capability [19][20]. Each Fog node completed 

operations that were atomic and unrelated to one another. Tasks 

that cannot be completed or handled by Fog devices are routed 

to the cloud layer. The third cloud layer is outfitted with high-

end servers with high execution capability and high storage 

capacity virtual machines (VM1, VM2,....VMn). 
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Figure 1.  Three-tier framework of a cloud-Fog-IoT computing system with 

improved Load Balanced – WEOA. 

The WEOA is implemented via the Load Balancer [21], [22] in 

Figure 1. The tasks are initially directed to the Load Balancer, 

when the product of the number of tasks and instructions exceeds 

a certain threshold. When this limit is exceeded, the load 

balancer contacts the API gateway, which then instructs the VM 

Controller to generate more worker virtual machines [23]. All 

machine parameters are retrieved by the API gateway from the 

VM Controller and then sent to the load balancer. Using the 

WEOA approach, the load balancer chooses the best computer, 

assigns tasks to the selected machine, and sends them to the 

resource controller over the API Gateway. The "Global 

Configuration" stores the metadata of the optimal machine and 

makes it accessible to subsequent cycles. All tasks are 

distributed to worker VMs by the "Resource Controller". To 

save energy, the "VM Controller" effectively removes inactive 

VMs. The "Resource Controller" then sends data from finished 

jobs to the cloud layer. Depending on the size of the device, tasks 

may be distributed to either Fog or Cloud devices. As tasks are 

executed, task offloading may occur, either from Fog to Cloud 

or from Cloud to Fog [24]. 

 

Problem Formulation 

Figure 1 depicts the task scheduling system, where Task 

T=(t1,t2,....tn) represented the jobs received from IoT devices. 

{FN1, FN2,....FNn} are the fog nodes, and (CN1........CNn) are 

the cloud nodes, which are responsible for task execution. 

However, there is an issue with the efficient assignment of tasks 

to these nodes in the Fog-Cloud scenario. The overall number of 

server nodes in the system is the sum of Fog and Cloud nodes. 

These nodes are all heterogeneous in terms of bandwidth (Nb) 

and processing speed (Nps). The Fog nodes process the tasks 

first, followed by the cloud nodes. The primary motivation for 

this research is to determine how to efficiently assign jobs to 

these nodes to minimize cost, time, and response time. When 

allocating jobs to nodes, our load balancer algorithm will 

consider all these limits. 

The problem of vehicular Fog computing is considered in 

this paper, where autonomous cars face traffic management 

issues in some nations. A car with no drivers collects data from 

RSU (roadside units) about traffic, potholes, and humps, among 

other things. In this case, real-time data is essential so that a 

braking system can function properly and avert any accidents. 

We are dealing with response time, cost, and makespan 

parameters in this study because supplying real-time information 

to automatic cars requires a high response time. 

A. Objective Function  

The motivation of this work is to minimize the cost, 

makespan, and response time. These three parameters are 

considered in this work since most applications, such as self-

driving cars, healthcare, gaming, and media, require the quickest 

response time, the largest throughput, and the lowest operational 

cost. The WOA is based on the bubble net attack tactic used by 

humpback whales. To update the positions of search agents, one 

of three strategies is used: random search, shrinking encircling, 

or spiral feeding. 

B. Cost 

Nodes, whether Fog nodes or cloud nodes, have an inherent 

cost connected with the tasks they perform in a system [25]. 

Costs for task processing and data transfer are constant factors 

in the system. By examining the costs related to the nodes' 

consumption of memory, computing power, and bandwidth, the 

computation costs may be calculated. On the other hand, 

communication cost includes the time needed for resource 

allocation, which may be measured by taking into account 

network latency, the time needed to run resource management 

algorithms, and the number of devices competing for resources. 

Combining the expenses of processing and communication 

results in the overall network cost, which is represented by 

Equation 1. 

    Total-Cost = ψComp-cost + ψComm-cost                          (1) 

C. Computation Cost 

The cost of memory, processing, and bandwidth 

utilized by the nodes can be used to calculate computation costs. 

 

ψComp-cost= ψcost(m) + ψcost (p) + ψcost(b)        (2) 

The cost of memory utilization, the cost of CPU, and the cost of 

bandwidth as described in Equation 2 can be used to calculate 

the Computation Cost of a system. 

http://www.ijritcc.org/
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                             ψcost(m)=∑ 𝑐𝑖
𝑚𝑚

𝑖=1                          (3) 

The cost of memory taken by nodes Ni during job completion is 

described in Equation 3. It is calculated using the cumulative 

memory used by fog nodes and clouds. 

              ψcost(p)=∑ 𝑐𝑗
𝑝𝑛

𝑗=1           (4) 

Similarly, Equation 4 above describes the cost of using the CPU 

by nodes Ni during task processing. Total CPU cost is the sum 

of cloud and fog costs, as shown in Equation 5.  

  𝑇𝑜𝑡𝑎𝑙𝐶𝑃𝑈
𝐶𝑜𝑠𝑡 =  𝐶𝐶𝑃𝑈

𝑐𝑙𝑜𝑢𝑑  ∪  𝐶𝐶𝑃𝑈
𝐹𝑜𝑔

                   (5) 

The cost of bandwidth must also be factored into the overall 

system cost. Bandwidth utilization on Fog nodes and the cloud 

may be the same. The total bandwidth utilized by both fog and 

cloud during the system's working period can be used to 

calculate bandwidth cost, as shown in Equation 6. 

       

  ψcost(b)=∑ 𝑐𝑘
𝑏𝑙

𝑘=1                                               (6) 

D. Communication Cost 

The time required to allocate resources is known as the 

communication cost, and it may be calculated by taking into 

account system network latency, the amount of time needed to 

run resource management algorithms, and the number of devices 

actively looking for resources. 

               ψComm-cost = Tnet-latency + Talgo-exec + NDev                (7) 

                

Network latency (Tnet-latency), as shown in the Equation 7, has a 

significant impact on how long resources are allocated between 

Fog nodes and devices. Reduced latency, measured in seconds 

(s), results in faster resource allocation. Additionally, the time 

used (Talgo-exec), which is likewise measured in seconds, is 

strongly impacted by the resource management algorithm's 

effectiveness in the fog environment. An algorithm that has been 

carefully optimized can quickly find available resources and 

distribute them more effectively. The total number of devices 

(NDev) linked to the Fog environment might also affect how 

quickly resources are allocated. More time may be needed for 

resource allocation and management if there are more devices to 

handle. 

Total cost in a system can be calculated using equations 2 and 7 

as shown in Equation 8. 

 

Total-Cost = (ψcost(m) + ψcost (p) + ψcost(b)) + (Tnet-latency 

+ Talgo-exec + NDev)                                 (8) 

E. Makespan 

Makespan can be calculated by subtracting the time of job 

completion from the time of task start.  It is the time it takes to 

complete a task from start to end. Makespan [26][27] is 

calculated as shown in Equation 9: 

MS= min {𝐹𝑡𝑖
𝑡𝑖𝑚𝑒  − 𝑆𝑡𝑖

𝑡𝑖𝑚𝑒}, where ti ε T, where ti ε T (9)  

           

Here, 𝐹𝑡𝑖
𝑡𝑖𝑚𝑒    is the task's completion time, and 𝑆𝑡𝑖

𝑡𝑖𝑚𝑒 , is the 

task's start time. Makespan must be kept to a minimum for 

effective job scheduling. 

 

 

F. Response-Time 

The machine's response time to any inquiry is defined as 

response time. Response times [28, 29] can be estimated for n 

concurrent user processes and m requests.  

 

   RT= n/m + Wttime                         (10) 

In the preceding Equation 10, numerous inquiries will be raised 

by many users n, and all of these inquiries m will be responded 

to by machines at any given time. Waiting time (Wttime) between 

two jobs might be included to calculate response time accurately. 

To process any inquiry, a system may have a long response time. 

The average response time is the time it takes machines to 

complete n tasks, where (Ti=t1, t2,...tn). The average response 

time can be calculated using the previously mentioned equation 

10a. 

ART= 
∑ 𝑇𝑖𝑚

𝑖=1
𝑛⁄                            (10a) 

Ti is the machine's individual time for task completion, and n is 

the number of tasks completed.  

G. objective-Function 

According to the preceding explanation, the objective function 

of our task, as stated in Equation 11, is to minimize cost, time, 

and response time. 

 

Objective-function= we1 * ψcost + we2* MS + we3 * RT        (11) 

 

Where we1, we2, and we3 are the relevant metric weights. The 

weightage of cost, time, and response time must be equal to one, 

as described in Equation 12.           

               ∑ 𝑤𝑒𝑖3
𝑖=1  = 1                  (12) 

 

IV. PROPOSED ALGORITHM 

This section discusses the algorithm we suggest. WEOA is a 

hybrid of whale optimization and Earthworm optimization 

algorithms. The advantages of both optimization techniques are 

used to improve the system's efficiency. 

 In our suggested strategy, we particularly use the reproduction 2 

method from the original Earthworm Algorithm. This method 

makes use of the crossover operation in the Earthworm 

Algorithm to make multiple machine replication easier. 

Additionally, we use the Whale Optimization Algorithm to hunt 

down and encircle tasks, or "prey," in this context. In the end, 

this combination strategy aids in the finding of the best solutions 
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for resource management within the Fog-Cloud system by 

speeding up the exploration phase and convergence speed. 

 

A. Initialization 

The arrangement of the whales represents a practical 

response to an optimization challenge. This project's main goal 

is to evaluate how well tasks and machines are mapped out. The 

earthworms and whales are both initialized in the first step of this 

process. The prevalence of earthworms contributes to the ease of 

whale reproduction. To find the most optimal solution within the 

search space, a maximum number of whale positions is 

randomly chosen. 

 

 

Algorithm: The WEOA pseudo-code 

 

Input: Maxiteration, ThresholdTask-Size. 

Output: Efficient Depict of tasks by reducing ψcost, MS, RT. 

Procedure: Start 

1. Initialize population W of whales and Earthworms.  

// Count of Machine M and Number of Tasks. 

2. Evaluate the Fitness Function. 

3. While currentitr <= Maxiteration do 

4. if prey > TaskThreshold then 

5. Evaluated the fitness of Whales. 

              // Check Task-Size based on the instructions. 

6. Cross-over reproduction from fitness and append to 

(W) as equation 13. 

              // Initializing heterogeneous machines from fitness. 

7. elif Encirclingprob > 0.5 then 

8. Update the whale position using encircling equation 14.  

//Update global configuration with the optimal machine. 

                  else do 

9. Update the whales position randomly.  

    //Update global configuration with an optimal machine. 

10. End if 

11. End if 

12. End-While 

13. Search for an optimal solution from globalconfig 

14. Optimal Solution Found. 

15. End Procedure 

 

Iteration Process and Fitness Function 

The Fitness function and subsequent algorithmic stages are 

focused on iteration, which is essential for determining the best 

search agent within the search space. The number of iterations 

that can be performed, known as the maximum iteration value or 

Maxiteration, determines how many iterations can be performed. 

The task size threshold value is used to define the job size for 

each iteration. The provided equation is used to evaluate the 

machine's fitness when the job size exceeds this limit. The 

Earthworm Optimization Algorithm is used to establish the 

reproduction plan if the machine's fitness no longer matches the 

threshold value. The optimization algorithm progresses through 

both the exploration and exploitation stages during each 

iteration. 

B. Exploration phase based on Earthworm strategy. 

The Earthworm optimization technique is used in the 

exploration phase of this algo-rithm. Machine reproduction or 

replication will proceed according to equation 13: 

 

𝑋𝑦(𝑖) = {
𝑋𝐴(𝑖), 1 ≤ 𝑖 < 𝑘

𝑋𝐵(𝑖 − 𝑘), 𝑘 < 𝑖 ≤ 𝑛
                 (13)      

         

Let A and B be the two machines; we will reproduce the new 

machine Y using A and B. Let XA represent machine A's 

feature vector, XB represent machine B's feature vector, and Xy 

represents machine Y's feature vector. Because we are using 

crossover reproduction (EOA), the offspring will have some 

random characteristics from A and some from B. The above 

equation demonstrates how the traits in Y are inherited from A 

and B.  

 According to the preceding equation, the "ith" feature of Y 

will be an ith feature from the parent A if 1≤i<k, and the "(i - 

k)th" feature from B if k<i≤n. where "k" is the cross-over point 

and is a random integer between 1 and n, and "n" is the length 

of A and B's feature vectors. As a result, the offspring Y will be 

a hybrid species with random features of A and B, indicating 

cross-over reproduction. 

C. Encircling the prey 

In this algorithm, the exploration phase is based on the 

Earthworm optimization technique. Reproduction or replication 

of machines will occur as per equation 14: 

X(t+1) = X(t) +A * Cos (a * t) * Cos (b * t) 

Y(t+1) = Y(t) +A * Cos (a * t) * Sin (b * t)                  (14) 

Z(t+1) = Z(t) +A * Sin (a * t) 

𝑋⃗(t+1) = X(t+1) 𝑖 ̂ + Y(t+1) 𝑗 ̂ + Z(t+1) 𝑘 ̂ 

The encircling motion of the whales is represented by the 

preceding equation, and the functions x(t), y(t), and z(t) give the 

x, y, and z coordinates of the whale in 3-dimensional space, 

respectively. The amplitude of the whale's spiral movement is 

represented by A in the above equation, while a and b are two 

whale-specific angles. The value of t varies from 0 to 1, 

indicating the progression of the spiral movement through time. 

The final equation is used to convert vectors from coordinates 
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returned by the functions. As a result, X is the whale's position 

vector. 

D. The exploitation phase is based on the Whale 

attacking mechanism. 

The exploitation phase aids in the hunt for prey; in our suggested 

approach, the exploitation phase is carried out using the whale 

optimization algorithm, as shown in Equation 15: 

𝑋⃗(t+1) = m. (𝑃⃗⃗ - 𝑋⃗(t)) + 𝑋⃗(t)             (15) 

Let 𝑃⃗⃗  be the prey's location vector and X(t) be the whale's 

position vector at time t. The above equation represents the 

whale's attacking character. The movement factor "m" here is 

between [0, 1]. It is determined by things such as the machine's 

specifications or the behavior of other whales in the population. 

The operation continues until the maximum number of iterations 

is reached. The optimal solution is derived from the global 

configuration upon completing the maximum iterations. If the 

final ideal solution is identified from the global configuration, 

the procedure concludes. 

 

 

Figure 2.  The proposed Whale Earthworm Optimization Algorithm 

Flowchart. 

Figure 2 depicts the proposed WEOA process. The flowchart 

begins with the initialization phases, which include the 

initialization of whales and earthworms. The method is 

continued until an optimal solution is identified based on the 

iteration number specified. The fitness function of the machines 

is estimated using Equation 11, which considers cost, 

makespan, and response time. The entire system is employed in 

vehicular Fog computing situations where automatic 

automobiles are operating on roadways and real-time data 

without delay is required for automatic vehicles to run. 

According to the Performance improvement rate stated in the 

result section for the vehicular Fog computing environment, 

response time is weighted (we1) at (0.60), makespan is 

weighted (we2) at (0.20), and the cost is weighted (we3) at 

(0.20). Response-time weightage is substantially higher since 

data on traffic bottlenecks, humps, and when to apply breaks are 

required on a high priority without delay for making decisions 

and avoiding an accident. 

V. RESULT AND DISCUSSION 

This section delves into the experimental setup and contrasts 

it with conventional procedures. All tests are conducted using 

the iFogSim toolkit [37] on a system configured with an Intel 

Core i7 processor, Windows 10 operating system, and 16GB of 

RAM. 

A. Experiment setup and dataset statistics 

The data workflows used to assess the performance of 

the proposed approach are extracted from real-world datasets, 

namely, HPC2N and CEA-CURIE (source: 

https://www.cs.huji.ac.il/labs/parallel/workload, accessed on 

October  20, 2023). These workload logs encompass execution 

traces resulting from concurrent HPC workload processing. 

Table 2 depicts the actual workloads employed in this work. In 

a real-world scenario, HPC2N and CEA-Curie have many 

workloads, although we only used ten in this experiment. 

TABLE II.   ILLUSTRATION OF REAL WORKLOADS 

Workload 

Log 

Parallel 

Tasks 
CPUs Users Filename 

HPC2N 202871 240 257 

HPC2N-

2002-2.2-

cln.swf 

CEA 

Curie 
312826 93312 582 

CEA-

Curie-

2011-2.1-

cln.swf 

 

Both Fog and cloud nodes are used for simulation processing. 

The experimental setup was evaluated using the parameters 

Cost, makespan, and response-time. Each machine on Fog and 
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Cloud has a different amount of bandwidth, processing power, 

and RAM. In comparison to the cloud, Fog nodes have a lower 

range of bandwidth, CPU frequencies, and RAM utilization. 

The cost is expressed in terms of (Grid$). Table 3 describes the 

Cloud and Fog scenario's configuration details. 

TABLE III.  CONFIGURATION OF CLOUD AND FOG SCENARIOS. 

B. Simulation results 

For simulation results evaluation, the suggested strategy is 

compared to an existing technique that was implemented 

utilizing optimization algorithms such as whale optimization, 

earthworm, cuckoo search, and so on. We have compared our 

proposed approach with five existing techniques including h-

DEWOA (hybrid-differential-evolution-enabled whale-

optimization algorithm) [38], cuckoo-search- differential 

algorithm (CSDEO) [39], Cuckoo-search-particle-swarm-

optimization algorithm (CSPSO) [40], blacklist matrix-based-

multi-objective algorithm (BLEMO) [41], and EEOA (Electric-

earthworm-optimization algorithm) [10]. All comparisons are 

performed over 30 iterations across 10 workloads from the 

HPC2N and CEA-CURIE datasets. 

 

C.  Results for CEA-Curie workload 

Figure 3 depicts the performance metric makespan comparative 

results for the suggested strategy with all five strategies 

discussed. According to the comparison data, CSPSO did not 

outperform the other techniques; however, the value of 

makespan for CSPSO is significantly larger than the other 

strategies. The differential evolution technique is integrated 

with the whale algorithm in the h-DEWOA approach since the 

whale algorithm has the problem of remaining in local optima 

and having a slow convergence speed. h-DEWOA also has poor 

makespan results. On the performance measure makespan, the 

suggested strategy beats all the mentioned techniques. The 

approach benefits from dynamic machine allocation and a load 

balancer approach, which constantly replicates the machine if 

jobs with higher threshold values come during iterations. For 

earlier workloads (WE01-WE05) proposed approach 

performance is much better in comparison to other techniques 

due to independent tasks and availability of resources & VMs. 

in later workloads (WE06-WE10), tasks are highly dependent 

and resource availability get lesser, that’s why makespan value 

difference among proposed and traditional technique is noticed 

less. 

 

 

Figure 3.   Best Makespan for CEA-Curie workload 

As indicated in Table 4, the performance improvement rate is 

calculated to determine the percentage of improvement of the 

suggested method using all described techniques as shown in 

Equation 16. 
𝑝 (𝑝𝑟𝑒)−𝑝 (𝑝𝑟𝑜)

𝑝 (𝑝𝑟𝑜)
                          (16) 

Here, ppre is the old approach's makespan value, and ppro is the 

suggested approach's makespan value. As illustrated in Table 4, 

the proposed strategy outperforms the techniques. WE01 best 

case makespan value of EEOA is 9987.45 for workload, and 

9788.07 for the recommended technique, according to the PIR 

equation 
9987.45−9788.07

9788.07
  ͌ ͌ 2.04 %. As a result, the proposed 

technique outperforms the EEOA by 2%. 

 

TABLE IV.  THE PERCENTAGE OF PERFORMANCE IMPROVEMENT FOR THE 

BEST MAKESPAN IS INCLUSIVE OF THE CEA-CURIE WORKLOAD IN THE 

PROPOSED APPROACH. 

PIR (%) of the proposed approach with all existing techniques 

Workloads Proposed 

Vs  

h-DEWOA 

(%) 

Proposed 

Vs 

CSDEO  

(%) 

Proposed 

Vs 

CSPSO  

(%) 

Proposed 

Vs 

BLEMO 

 (%) 

Proposed 

Vs EEOA 

(%) 

WE01 4.98 12.07 29.50 4.21 2.04 

WE02 26.83 38.54 63.81 17.03 1.05 

WE03 7.82 17.50 62.80 13.68 1.94 

WE04 21.78 24.61 40.16 14.14 2.38 

WE05 17.80 29.58 53.86 14.19 2.49 

WE06 20.92 40.36 73.97 26.87 1.75 

WE07 8.55 15.97 23.43 15.03 1.15 

WE08 18.28 34.71 76.54 17.25 1.38 

WE09 5.33 20.53 65.84 32.03 2.69 

WE10 30.08 42.46 127.87 46.76 1.83 

 

Parameters Fog Cloud Units 

Processing Speed [1000:2000] [3000:5000] MIPS 

Bandwidth [128:1024] [512:4096] Mbps 

RAM [250:5000] [5000:20000] MB 

Cost [0.2:0.5] [0.6:1.0] G$ 

VMs Numbers [15,20,35] [10,15,20] VM 
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Figure 4.   Cost comparison for CEA-Curie workload 

Figure 4  depicts a cost comparison of the CEA-Curie workload, 

with CSPSO having a greater cost in the system. For workloads 

WE01-WE08, BLEMO, h-DEWOA, and CSDEO have roughly 

the same cost. Our proposed method outperforms the EEOA 

technique and improves performance by 2% on the CEA-curie 

workload. Because VMs allocate properly, the suggested 

technique operates efficiently and at a lower cost value. The 

network is managed jointly by the load balancer and the 

resource controller. If the load balancer sends an inquiry about 

task mapping via the API gateway, the resource controller will 

verify the available resources on each machine. Because no idle 

machines will remain in the network, the proposed technique 

will be less expensive. 

 

 

Figure 5.  Response-time comparison for CEA-Curie workload 

On the CEA-Curie workload, Figure 5 depicts a response-time 

comparison with existing approaches. In the system, response 

time is calculated by combining communication and think time. 

Because the CSPSO approach has a longer delay, its RT is 

higher when compared to other techniques. CSDEO and 

BLEMO task mapping are nearly identical. Both techniques are 

vector-based, with a vector maintained for mapping tasks to 

VMs. When compared to existing approaches, the proposed 

methodology has a low RT. The whale optimization 

exploitation phase aids in responding quickly to jobs. In 

comparison, our algorithm performed admirably across all 

workloads. In terms of performance, the proposed strategy 

outperforms the techniques. The EEOA WE01 RT value for the 

workload is 20.14, and the proposed method is 18.89, according 

to the PIR calculation, 
20.14−18.98

18.98
  ͌  6.11 %. As a result, the 

proposed technique outperforms the EEOA by 6%.  

D. Results for HPC2N Workload 

Figure 6 compares the suggested strategy to all other techniques 

in terms of performance metric makespan. Figure 3 shows that 

the CSPSO approach performs poorly on the HPC2N workload 

for the Performance metric makespan. CSPSO's task mapping 

technique is unable to operate on a high-performance network. 

On 10 workloads, the h-DEWOA and BLEMO methods 

perform equally well after 30 iterations. Our proposed strategy 

outperformed existing techniques and performed better. Even 

for the High-performance network dataset, VMs in the proposed 

technique are correctly handled by the VM controller and 

resource controller. Here, the Exploitation phase, which is 

controlled by the whale optimization algorithm, is doing 

admirably. 

 

 

Figure 6.  Best Makespan for HPC2N Workload 

The proposed technique's performance increase rate is also 

determined for the HPC2N workload in comparison to previous 

strategies using Equation 16, as shown in Table 5. According to 

the PIR equation, the best case makespan value of EEOA for 

workload is 17612.19 for WE01 and 17225.72 for the proposed 

approach, 
17612.19−17225.72

17225.72
  ͌  2.24%. Because of this, the 

proposed technique outperforms EEOA by 2%. 
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TABLE V.  THE PERCENTAGE OF PERFORMANCE IMPROVEMENT FOR THE 

BEST MAKESPAN IS ACHIEVED WITH THE INCLUSION OF THE HPC2N 

WORKLOAD IN THE PROPOSED APPROACH. 

PIR (%) of the proposed approach with all existing techniques 

Workloads Proposed  

Vs 

 h-DEWOA 

(%) 

Proposed 

Vs 

CSDEO 

(%) 

Proposed 

Vs 

CSPSO 

(%) 

Proposed 

Vs 

BLEMO 

(%) 

Proposed 

Vs 

EEOA 

(%) 

WE01 6.75 13.76 25.53 19.66 2.25 

WE02 11.16 22.83 47.36 8.99 1.45 

WE03 7.32 14.81 30.45 7.49 2.22 

WE04 3.53 12.42 35.17 4.81 1.58 

WE05 19.73 39.48 69.51 28.71 2.99 

WE06 15.48 25.24 78.33 31.58 2.12 

WE07 7.80 11.31 62.77 18.25 2.25 

WE08 11.71 26.43 78.17 28.53 1.93 

WE09 41.37 43.13 79.44 73.08 2.40 

WE10 54.80 75.91 80.66 78.36 1.88 

Figure 7 compares the overall cost for the HPC2N workload, 

where cost is expressed in G$. The cost factor is defined by 

the bandwidth, CPU, and RAM of the parameter. 

 

 
 

Figure 7.  Cost comparison for HPC2N workload 

According to Figure 7, the cost of CSPSO is substantially higher 

than the cost of BLEMO and h-DEWOA. All techniques' costs 

for workloads WE04 and WE05 have been raised. In 

comparison to EEOA and other approaches, the proposed 

technique is less expensive. Over the EEOA strategy, the 

proposed approach outperforms it by 2%. The proposed 

solution reduces the cost of employing VMs by generating them 

dynamically based on the requirements [42]. However, in the 

case of the CSPSO approach, all VMs are initialized without 

regard for network load. As a result, the CSPSO technique is 

substantially more expensive than other procedures. 

 

Figure 8.  Response-time comparison for HPC2N workload. 

Figure 8 depicts a comparison of  Response time on the HPC2N 

workload with existing approaches. Similarly, for the HPC2N 

task, the delay in the CSPSO approach is greater, hence the RT 

of the CSPSO technique is greater when compared to all other 

techniques. In contrast to existing approaches, our proposed 

methodology exhibits a reduced response time (RT). Notably, 

our algorithm consistently performed exceptionally well across 

all workloads, outperforming existing techniques in terms of 

overall performance. Specifically, for the workload, the EEOA 

yielded a WE01 RT value of 23.58, whereas our proposed 

technique achieved an improved RT of 22.18. Consequently, 

based on the PIR calculation, there is a notable improvement of 

approximately 6.31%. Thus, our proposed technique surpasses 

the EEOA by 6% in terms of performance. 

 

Figure 9.  Objective Function value throughout a single run of the proposed 

algorithm for CEA-Curie workload. 

 

Figure 10.  Objective Function value throughout a single run of the proposed 

algorithm for HPC2N workload. 
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Figures 9 and 10 display the objective function values 

throughout a single run iteration for both the CEA-Curie and 

HPC2N algorithms. As per Equation 11, the fitness value for 

both the proposed and EEOA algorithms is calculated, 

considering the values of We1 and We2, which are 0.2 and 0.6, 

respectively. The suggested WEOA algorithm exhibits quicker 

convergence compared to the EEOA algorithm. The results 

indicate that, when contrasted with the EEOA algorithm, the 

suggested WEOA algorithm effectively explored the solution 

space and reached the optimal value within a comparable 

timeframe. 

 

Figure 11.  Degree of imbalance of the offloaded the tasks. 

 

Figure 11 depicts the degree of imbalance for the EEOA 

algorithm and the proposed approach using the same previous 

parameter settings as the number of IoT nodes increases. The 

graph demonstrates that the suggested WEOA algorithm 

maintains less values. This suggests that the proposed approach 

successfully distributes the workload across the Fog nodes. 

TABLE VI.  ANOVA STATISTICAL ANALYSIS: TWO FACTOR WITHOUT 

REPLICATION FOR DEGREE OF IMBALANCE 

Source of 

Variation SS df MS F P-value F crit 

Rows 0.050375 5 0.010075 30.68528 0.000929 5.050329 

Columns 0.003008 1 0.003008 9.162437 0.029183 6.607891 

Error 0.001642 5 0.000328    

       

Total 0.055025 11     

 

Table 6 shows the results of an ANOVA statistical analysis 

of two factors without replication on the degree of imbalance. 

The proposed algorithms outperform traditional algorithms in 

terms of analytical efficiency. In statistical analysis, a p-value 

less than 0.05 and an F crit value less than F demonstrate the 

capability of the suggested approach. According to this analysis, 

the proposed approach is superior for handling optimization 

challenges on the IoT-Fog-Cloud system. 

VI. CONCLUSION AND FUTURE WORK 

The novel WEOA is a hybrid algorithm that combines elements 

of the Whale Optimization and Earthworm Optimization 

algorithms within the load balancer which effectively strikes a 

balance between exploration and exploitation in these 

approaches. an effective task allocation technique is introduced 

via the load balancer. The proposed algorithms are compared 

against five competing optimization techniques, considering key 

parameters such as cost, makespan, and response time using the 

HPC2N and CEA-CURIE datasets. The approach using the load 

balancer outperforms h-DEWOA, CSDEO, CSPSO, BLEMO, 

and EEOA by up to 6% in response time, 2% in cost, and 2% in 

makespan compared to EEOA. Furthermore, it achieves 

remarkable results, surpassing h-DEWOA, CSDEO, CSPSO, 

and BLEMO by up to 82% in response time, up to 75% in cost, 

and up to 80% in makespan. In the future, task offloading could 

incorporate machine learning models to anticipate and predict 

job arrivals and placement order, potentially enhancing Quality 

of Service (QoS) optimization in fog-cloud-based systems. 
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