
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 889
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Load Balancer using Whale-Earthworm Optimization for

Efficient Resource Scheduling in the IoT-Fog-Cloud

Framework
1,2Gaurav Goel, 1Dr. Shamik Tiwari, 3Dr. Rajeev Tiwari

School of Computer Science
1University of Petroleum and Energy Studies,

Dehradun, India.
2Department of Computer Science and Engineering

Chandigarh Engineering College-CGC,

Landran (Mohali), India

gaurav.goel9@gmail.com, shamik.tiwari@ddn.upes.ac.in.
3School of Computer Science and Engineering,

IILM University,

Greater Noida, Uttar Pradesh, India

errajeev.tiwari@gmail.com

Abstract— Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential

usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate

the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization

method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a

balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used.

Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope

for improvement in finding the optimal solutions using its exploitation. This research introduces an efficient task allocation method as a novel

load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired

by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response

time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA,

CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions

of up to 75%, and makespan improvements of up to 80%.

Keywords- Fog Computing; Resource Management; Task Scheduling; Whale optimization; Load Balancer.

I. INTRODUCTION

The Internet of Things (IoT) significantly influences network

and computing technologies in Industry 5.0 and succeeding

generations. IoT gives access to a wide number of applications,

including but not limited to healthcare, traffic management, and

self-driving cars, through its integrated components like sensors

and network connectivity to a wide range of gadgets and

household objects. [1][2]. To keep up with the pace of

technology, smart devices generate a wide range of data that

must be processed and computed quickly for clients, and end

users. By reducing latency, Fog computing promotes IoT and

complements cloud computing [3] [4]. Fog nodes extend the

cloud to the network's edge, bringing it closer to the source of

IoT data. To address issues such as latency, energy efficiency,

and security, data is processed at Fog nodes before being

transmitted to the cloud for high storage and compute

requirements. Cloud and Fog evaluation paradigms are required

for all types of IoT data. The Fog-Cloud paradigm is now one of

the best solutions available for increased Quality of Service

(QoS) requirements [5][6]. Unlike a cloud system, a Fog system

is constantly constrained by processing capability. Many IoT

applications are latency-sensitive and require different levels of

makespan and response time. Due to latency issues, scheduling,

and management of these types of applications become difficult

and unacceptable in industries like healthcare, autonomous

driving, and real-time data processing requirements in the

gaming industry. Resource scheduling is one of the solutions to

the issues of performance parameters in Fog-Cloud systems

[7][8]. The use of cloud platforms raises the cost of

communication and computation for the IoT applications. Thus,

a balanced tradeoff needs to be maintained among the challenges

of such systems.

http://www.ijritcc.org/
mailto:gaurav.goel9@gmail.com
mailto:shamik.tiwari@ddn.upes.ac.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 890
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Cloud-Fog based platform service companies offer a variety

of services at varying prices. Cloud services have their own costs

based on user demand, with different levels of constraint for

consumers. The cost of adopting a Fog-Cloud system may be

affected by two factors: computation time and storage. Many

present strategies are incapable of balancing cost and QoS

factors. Therefore, this study investigates the significance of

tasks in a Fog-Cloud system concerning both QoS and cost. We

introduce a hybrid optimization algorithm that combines the

Whale optimization algorithm [9] with the Earthworm

optimization algorithm [10] for the efficient scheduling of tasks.

The suggested technique is intended to achieve job scheduling

with cost savings and efficient QoS achievement.

The primary contribution of this study can be summarized as

follows:

1. A hybrid optimization algorithm, called WEOA (Whale-

Earthworm Optimization Algorithm), designed to enhance

resource management within the Fog-Cloud environment

efficiently is introduced.

2. The exploration phase and convergence speed are improved

for optimal resource allocations.

3. Proposing and designing autonomous “Load-balancer based

task Allocation Framework” as per the three-layer

architecture of Fog environment.

This work is organized into several sections: Section 2

provides a summary of previous resource management

techniques in fog computing, while Section 3 outlines the

System Architecture for this domain. Section 4 delves into the

problem formulation within the Fog environment, and Section 5

elaborates on the problem-to-solution transition, introducing the

proposed algorithm, and Section 6 presents the results. Finally,

in Section 7, the study concludes.

II. LITERATURE REVIEW

Kumar et al. [10] have proposed a hybrid electric

earthworm optimization algorithm to tackle the problem of

efficiently scheduling jobs in a Fog-cloud environment to

improve QoS for IoT applications in the IoT-Fog-cloud

framework. The Electric fish and earthworm optimization

method is used by researchers to reduce system latency and

energy consumption. Both active and passive electrolocation

methods are utilized to enhance the position-updating process,

thus improving the overall efficiency of the suggested approach.

This approach applies to real-world smart cities and offers

valuable utility in vehicle network management. The authors

compared cost, makespan, execution time, and energy

consumption and found that their method outperformed previous

procedures. The proposed approach is tested on real-world

workloads from CEA-CURIE and HPC2N. This work lacks an

offloading mechanism and a workload management task.

 Sarrafzade et al. [11] have suggested a genetic form

algorithm for service placement in the Fog environment. The

proposed method is a penalty-based method for determining

latency and time usage in cloud installations. The writers also

took the proximity of applications into account. A priority value

is identified by the chromosome-selection procedure, which

estimates the proximity of the dependent component. The

proposed technique successfully reduced costs, network

utilization, and energy consumption. The work's restriction is

that time and cost measurements may be incorporated into this

research. Yadav et al. [12] have developed a modified fireworks

algorithm for reducing makespan and cost. Researchers

employed opposition-based learning and differential evaluation

methodologies with a modified firework algorithm. For the

efficiency of an algorithm, researchers have concentrated on the

exploration and exploitation phases. Con-vergence can be

increased by incorporating both phases and algorithms cannot

become trapped in local optima. The proposed strategy is

compared to the existing meta-heuristic technique on parameter

cost and makespan, and its importance is verified. Work

limitations the makespan metric still needs improvement. The

Hidden Markov Model was explored by Javaheri et al. [13] for

anticipating available Fog nodes for incoming requests,

workflows that have missed the deadline, and offloading jobs

from the Fog to the cloud. The Baum-Welch algorithm is utilized

for HMM training, and the Viterbi technique is used to discover

accessible Fog nodes. DO-HHO (Discrete-opposition-Harris

Hawks optimization algorithm) has been presented by

researchers for effective workflow scheduling with the

parameters cost, deadline, and energy. The proposed technique

successfully decreases delay, workload offloading, and SLA

violations. The research's shortcoming is the high amount of

energy squandered in this procedure. Abu-Amssimir et al. [14]

have suggested a greedy-edge-placement strategy for latency-

sensitive IoT applications that minimize delay. The proposed

technique efficiently maximizes throughput while minimizing

delay. Researchers are working on the greedy-delay-minimizing

applications selection and placement step for the suggested

strategy. The selection stage achieved lower end-to-end latency,

as did the placement stage, which used the DFS algorithm to pick

Fog nodes for module application placement. The suggested

approach successfully provides high-quality services while

lowering net-work bandwidth, latency, and energy usage. The

work's weakness is that reaction time may need to be calculated

to demonstrate network efficiency. Maatoug et al. [15]

developed a Discrete-event-system-specification mechanism for

smart building energy management. Different sub-models are

developed in the suggested technique by connecting multiple

objects in the building that create the Fog environment. The

developed technique effectively reduces latency and energy

usage. The proposed model can be implemented by eliminating

or adding a sub-model that aids in the achievement of efficient

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 891
IJRITCC | October 2023, Available @ http://www.ijritcc.org

QOS in a Fog environment. Some essential QoS metrics, such as

makespan and reaction time, are absent and insufficient to ensure

QoS. Ogundoyin et al. [16] have described a hybrid

optimization algorithm based on the Particle Swarm

Optimization and the Firefly algorithm. Researchers discussed

the issue of sojourn rate and trust, energy usage, and node

capacity. The liner-sum-weight approach is employed to

consolidate an individual objective function, and the best-worst

method is utilized to establish the weight vector for the aggregate

function. The proposed technique surpasses traditional methods

in performance. Hussain et al. [17] presented a novel vehicular

fog computation approach. The authors considered the delay

issue as well as energy-sensitive automobile applications.

Researchers concentrated on data offloading from automotive

devices to RSUs and BSs (base stations). The authors suggested

a multi-objective optimization problem named Swarm-

Optimized Non-dominated sorting-Genetic algorithm (SONG)

in this paper. When compared to the NSGA-2 and SMPSO

approaches, the new approach gives higher quality than previous

strategies. The network's response time improves just somewhat

over previous solutions. Ghobaei-Arani et al. [18] have

developed a meta-heuristic approach for enhanced service

allocation. The authors presented a whale optimization method

for improved resource management in the Cloud-Fog system,

and they used throughput and energy consumption as objective

functions to determine the system's efficiency. The simulation

findings show that the proposed strategy minimizes delay and

energy consumption while improving resource utilization. Some

drawbacks in the currently used methodologies are observed and

are detailed below on various parameters examined:

1. A lack of variety in the workload: To evaluate task

scheduling algorithms' efficacy and flexibility, a variety of

workloads and application kinds should be used [10] [17].

However, some studies could concentrate on workload

characteristics or neglect to take a variety of application

requirements into account.

2. Little Attention Paid to Communication Overhead: In cloud-

fog environments, effective task scheduling must consider

communication overhead between fog nodes and the cloud

as well as between fog nodes. Some publications, however,

might not sufficiently handle this issue or might use

oversimplifying suppositions that don't account for actual

communication limitations [11][14][15][17].

3. Inadequate Resource Management Methodologies: Effective

task scheduling should include resource management

techniques like load balancing, fault tolerance, and

scalability in addition to job allocation. Some works might

ignore these factors or offer scant guidance on how to

manage them in a cloud-fog architecture

[11][12][14][15][16].

4. Cost and energy efficiency trade-offs: Finding the ideal

balance between cost and energy efficiency can be difficult,

although both are crucial considerations in task scheduling.

Studies that place too much emphasis on one feature while

disregarding the other may produce less-than-ideal results

[13][15] [16][17][18].

We present the notations used in our suggested solution as

seen in Table 1.

TABLE I. NOTATION AND DEFINITIONS

Notation Definition

Finishing time

of the Task

Starting time of
the Task

Wttime

Waiting time

 T
Current

iteration

Distance

Tmax
Maximum

iteration

NP
Earthworm

Population Size

nKEW
Number of
earthworms

ψComp-cost
Computation

Cost

ψComm-cost
Communication

Cost

ψcost(m)
Cost of

Memory

ψcost(p) Cost of CPU

ψcost(b)
Cost of

Bandwidth

MS Makespan

RT Response time

Wt time Waiting Time

ART
Average

Response time

III. SYSTEM ARCHITECTURE

The three-tier framework of a cloud-Fog-IoT computing

system is depicted in Figure 1. The first-tier layer is made up of

(D1, D2,... Dn) IoT devices, and it contains data that will be

transferred to the top layer for processing. The intermediate Fog

layer (f1, f2...fn) has mini servers with limited storage and

processing capability [19][20]. Each Fog node completed

operations that were atomic and unrelated to one another. Tasks

that cannot be completed or handled by Fog devices are routed

to the cloud layer. The third cloud layer is outfitted with high-

end servers with high execution capability and high storage

capacity virtual machines (VM1, VM2,....VMn).

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 892
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 1. Three-tier framework of a cloud-Fog-IoT computing system with

improved Load Balanced – WEOA.

The WEOA is implemented via the Load Balancer [21], [22] in

Figure 1. The tasks are initially directed to the Load Balancer,

when the product of the number of tasks and instructions exceeds

a certain threshold. When this limit is exceeded, the load

balancer contacts the API gateway, which then instructs the VM

Controller to generate more worker virtual machines [23]. All

machine parameters are retrieved by the API gateway from the

VM Controller and then sent to the load balancer. Using the

WEOA approach, the load balancer chooses the best computer,

assigns tasks to the selected machine, and sends them to the

resource controller over the API Gateway. The "Global

Configuration" stores the metadata of the optimal machine and

makes it accessible to subsequent cycles. All tasks are

distributed to worker VMs by the "Resource Controller". To

save energy, the "VM Controller" effectively removes inactive

VMs. The "Resource Controller" then sends data from finished

jobs to the cloud layer. Depending on the size of the device, tasks

may be distributed to either Fog or Cloud devices. As tasks are

executed, task offloading may occur, either from Fog to Cloud

or from Cloud to Fog [24].

Problem Formulation

Figure 1 depicts the task scheduling system, where Task

T=(t1,t2,....tn) represented the jobs received from IoT devices.

{FN1, FN2,....FNn} are the fog nodes, and (CN1........CNn) are

the cloud nodes, which are responsible for task execution.

However, there is an issue with the efficient assignment of tasks

to these nodes in the Fog-Cloud scenario. The overall number of

server nodes in the system is the sum of Fog and Cloud nodes.

These nodes are all heterogeneous in terms of bandwidth (Nb)

and processing speed (Nps). The Fog nodes process the tasks

first, followed by the cloud nodes. The primary motivation for

this research is to determine how to efficiently assign jobs to

these nodes to minimize cost, time, and response time. When

allocating jobs to nodes, our load balancer algorithm will

consider all these limits.

The problem of vehicular Fog computing is considered in

this paper, where autonomous cars face traffic management

issues in some nations. A car with no drivers collects data from

RSU (roadside units) about traffic, potholes, and humps, among

other things. In this case, real-time data is essential so that a

braking system can function properly and avert any accidents.

We are dealing with response time, cost, and makespan

parameters in this study because supplying real-time information

to automatic cars requires a high response time.

A. Objective Function

The motivation of this work is to minimize the cost,

makespan, and response time. These three parameters are

considered in this work since most applications, such as self-

driving cars, healthcare, gaming, and media, require the quickest

response time, the largest throughput, and the lowest operational

cost. The WOA is based on the bubble net attack tactic used by

humpback whales. To update the positions of search agents, one

of three strategies is used: random search, shrinking encircling,

or spiral feeding.

B. Cost

Nodes, whether Fog nodes or cloud nodes, have an inherent

cost connected with the tasks they perform in a system [25].

Costs for task processing and data transfer are constant factors

in the system. By examining the costs related to the nodes'

consumption of memory, computing power, and bandwidth, the

computation costs may be calculated. On the other hand,

communication cost includes the time needed for resource

allocation, which may be measured by taking into account

network latency, the time needed to run resource management

algorithms, and the number of devices competing for resources.

Combining the expenses of processing and communication

results in the overall network cost, which is represented by

Equation 1.

 Total-Cost = ψComp-cost + ψComm-cost (1)

C. Computation Cost

The cost of memory, processing, and bandwidth

utilized by the nodes can be used to calculate computation costs.

ψComp-cost= ψcost(m) + ψcost (p) + ψcost(b) (2)

The cost of memory utilization, the cost of CPU, and the cost of

bandwidth as described in Equation 2 can be used to calculate

the Computation Cost of a system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 893
IJRITCC | October 2023, Available @ http://www.ijritcc.org

 ψcost(m)=∑ 𝑐𝑖
𝑚𝑚

𝑖=1 (3)

The cost of memory taken by nodes Ni during job completion is

described in Equation 3. It is calculated using the cumulative

memory used by fog nodes and clouds.

 ψcost(p)=∑ 𝑐𝑗
𝑝𝑛

𝑗=1 (4)

Similarly, Equation 4 above describes the cost of using the CPU

by nodes Ni during task processing. Total CPU cost is the sum

of cloud and fog costs, as shown in Equation 5.

 𝑇𝑜𝑡𝑎𝑙𝐶𝑃𝑈
𝐶𝑜𝑠𝑡 = 𝐶𝐶𝑃𝑈

𝑐𝑙𝑜𝑢𝑑 ∪ 𝐶𝐶𝑃𝑈
𝐹𝑜𝑔

 (5)

The cost of bandwidth must also be factored into the overall

system cost. Bandwidth utilization on Fog nodes and the cloud

may be the same. The total bandwidth utilized by both fog and

cloud during the system's working period can be used to

calculate bandwidth cost, as shown in Equation 6.

 ψcost(b)=∑ 𝑐𝑘
𝑏𝑙

𝑘=1 (6)

D. Communication Cost

The time required to allocate resources is known as the

communication cost, and it may be calculated by taking into

account system network latency, the amount of time needed to

run resource management algorithms, and the number of devices

actively looking for resources.

 ψComm-cost = Tnet-latency + Talgo-exec + NDev (7)

Network latency (Tnet-latency), as shown in the Equation 7, has a

significant impact on how long resources are allocated between

Fog nodes and devices. Reduced latency, measured in seconds

(s), results in faster resource allocation. Additionally, the time

used (Talgo-exec), which is likewise measured in seconds, is

strongly impacted by the resource management algorithm's

effectiveness in the fog environment. An algorithm that has been

carefully optimized can quickly find available resources and

distribute them more effectively. The total number of devices

(NDev) linked to the Fog environment might also affect how

quickly resources are allocated. More time may be needed for

resource allocation and management if there are more devices to

handle.

Total cost in a system can be calculated using equations 2 and 7

as shown in Equation 8.

Total-Cost = (ψcost(m) + ψcost (p) + ψcost(b)) + (Tnet-latency

+ Talgo-exec + NDev) (8)

E. Makespan

Makespan can be calculated by subtracting the time of job

completion from the time of task start. It is the time it takes to

complete a task from start to end. Makespan [26][27] is

calculated as shown in Equation 9:

MS= min {𝐹𝑡𝑖
𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑖

𝑡𝑖𝑚𝑒}, where ti ε T, where ti ε T (9)

Here, 𝐹𝑡𝑖
𝑡𝑖𝑚𝑒 is the task's completion time, and 𝑆𝑡𝑖

𝑡𝑖𝑚𝑒 , is the

task's start time. Makespan must be kept to a minimum for

effective job scheduling.

F. Response-Time

The machine's response time to any inquiry is defined as

response time. Response times [28, 29] can be estimated for n

concurrent user processes and m requests.

 RT= n/m + Wttime (10)

In the preceding Equation 10, numerous inquiries will be raised

by many users n, and all of these inquiries m will be responded

to by machines at any given time. Waiting time (Wttime) between

two jobs might be included to calculate response time accurately.

To process any inquiry, a system may have a long response time.

The average response time is the time it takes machines to

complete n tasks, where (Ti=t1, t2,...tn). The average response

time can be calculated using the previously mentioned equation

10a.

ART=
∑ 𝑇𝑖𝑚

𝑖=1
𝑛⁄ (10a)

Ti is the machine's individual time for task completion, and n is

the number of tasks completed.

G. objective-Function

According to the preceding explanation, the objective function

of our task, as stated in Equation 11, is to minimize cost, time,

and response time.

Objective-function= we1 * ψcost + we2* MS + we3 * RT (11)

Where we1, we2, and we3 are the relevant metric weights. The

weightage of cost, time, and response time must be equal to one,

as described in Equation 12.

 ∑ 𝑤𝑒𝑖3
𝑖=1 = 1 (12)

IV. PROPOSED ALGORITHM

This section discusses the algorithm we suggest. WEOA is a

hybrid of whale optimization and Earthworm optimization

algorithms. The advantages of both optimization techniques are

used to improve the system's efficiency.

 In our suggested strategy, we particularly use the reproduction 2

method from the original Earthworm Algorithm. This method

makes use of the crossover operation in the Earthworm

Algorithm to make multiple machine replication easier.

Additionally, we use the Whale Optimization Algorithm to hunt

down and encircle tasks, or "prey," in this context. In the end,

this combination strategy aids in the finding of the best solutions

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 894
IJRITCC | October 2023, Available @ http://www.ijritcc.org

for resource management within the Fog-Cloud system by

speeding up the exploration phase and convergence speed.

A. Initialization

The arrangement of the whales represents a practical

response to an optimization challenge. This project's main goal

is to evaluate how well tasks and machines are mapped out. The

earthworms and whales are both initialized in the first step of this

process. The prevalence of earthworms contributes to the ease of

whale reproduction. To find the most optimal solution within the

search space, a maximum number of whale positions is

randomly chosen.

Algorithm: The WEOA pseudo-code

Input: Maxiteration, ThresholdTask-Size.

Output: Efficient Depict of tasks by reducing ψcost, MS, RT.

Procedure: Start

1. Initialize population W of whales and Earthworms.

// Count of Machine M and Number of Tasks.

2. Evaluate the Fitness Function.

3. While currentitr <= Maxiteration do

4. if prey > TaskThreshold then

5. Evaluated the fitness of Whales.

 // Check Task-Size based on the instructions.

6. Cross-over reproduction from fitness and append to

(W) as equation 13.

 // Initializing heterogeneous machines from fitness.

7. elif Encirclingprob > 0.5 then

8. Update the whale position using encircling equation 14.

//Update global configuration with the optimal machine.

 else do

9. Update the whales position randomly.

 //Update global configuration with an optimal machine.

10. End if

11. End if

12. End-While

13. Search for an optimal solution from globalconfig

14. Optimal Solution Found.

15. End Procedure

Iteration Process and Fitness Function

The Fitness function and subsequent algorithmic stages are

focused on iteration, which is essential for determining the best

search agent within the search space. The number of iterations

that can be performed, known as the maximum iteration value or

Maxiteration, determines how many iterations can be performed.

The task size threshold value is used to define the job size for

each iteration. The provided equation is used to evaluate the

machine's fitness when the job size exceeds this limit. The

Earthworm Optimization Algorithm is used to establish the

reproduction plan if the machine's fitness no longer matches the

threshold value. The optimization algorithm progresses through

both the exploration and exploitation stages during each

iteration.

B. Exploration phase based on Earthworm strategy.

The Earthworm optimization technique is used in the

exploration phase of this algo-rithm. Machine reproduction or

replication will proceed according to equation 13:

𝑋𝑦(𝑖) = {
𝑋𝐴(𝑖), 1 ≤ 𝑖 < 𝑘

𝑋𝐵(𝑖 − 𝑘), 𝑘 < 𝑖 ≤ 𝑛
 (13)

Let A and B be the two machines; we will reproduce the new

machine Y using A and B. Let XA represent machine A's

feature vector, XB represent machine B's feature vector, and Xy

represents machine Y's feature vector. Because we are using

crossover reproduction (EOA), the offspring will have some

random characteristics from A and some from B. The above

equation demonstrates how the traits in Y are inherited from A

and B.

 According to the preceding equation, the "ith" feature of Y

will be an ith feature from the parent A if 1≤i<k, and the "(i -

k)th" feature from B if k<i≤n. where "k" is the cross-over point

and is a random integer between 1 and n, and "n" is the length

of A and B's feature vectors. As a result, the offspring Y will be

a hybrid species with random features of A and B, indicating

cross-over reproduction.

C. Encircling the prey

In this algorithm, the exploration phase is based on the

Earthworm optimization technique. Reproduction or replication

of machines will occur as per equation 14:

X(t+1) = X(t) +A * Cos (a * t) * Cos (b * t)

Y(t+1) = Y(t) +A * Cos (a * t) * Sin (b * t) (14)

Z(t+1) = Z(t) +A * Sin (a * t)

𝑋⃗(t+1) = X(t+1) 𝑖 ̂ + Y(t+1) 𝑗 ̂ + Z(t+1) 𝑘 ̂

The encircling motion of the whales is represented by the

preceding equation, and the functions x(t), y(t), and z(t) give the

x, y, and z coordinates of the whale in 3-dimensional space,

respectively. The amplitude of the whale's spiral movement is

represented by A in the above equation, while a and b are two

whale-specific angles. The value of t varies from 0 to 1,

indicating the progression of the spiral movement through time.

The final equation is used to convert vectors from coordinates

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 895
IJRITCC | October 2023, Available @ http://www.ijritcc.org

returned by the functions. As a result, X is the whale's position

vector.

D. The exploitation phase is based on the Whale

attacking mechanism.

The exploitation phase aids in the hunt for prey; in our suggested

approach, the exploitation phase is carried out using the whale

optimization algorithm, as shown in Equation 15:

𝑋⃗(t+1) = m. (𝑃⃗⃗ - 𝑋⃗(t)) + 𝑋⃗(t) (15)

Let 𝑃⃗⃗ be the prey's location vector and X(t) be the whale's

position vector at time t. The above equation represents the

whale's attacking character. The movement factor "m" here is

between [0, 1]. It is determined by things such as the machine's

specifications or the behavior of other whales in the population.

The operation continues until the maximum number of iterations

is reached. The optimal solution is derived from the global

configuration upon completing the maximum iterations. If the

final ideal solution is identified from the global configuration,

the procedure concludes.

Figure 2. The proposed Whale Earthworm Optimization Algorithm

Flowchart.

Figure 2 depicts the proposed WEOA process. The flowchart

begins with the initialization phases, which include the

initialization of whales and earthworms. The method is

continued until an optimal solution is identified based on the

iteration number specified. The fitness function of the machines

is estimated using Equation 11, which considers cost,

makespan, and response time. The entire system is employed in

vehicular Fog computing situations where automatic

automobiles are operating on roadways and real-time data

without delay is required for automatic vehicles to run.

According to the Performance improvement rate stated in the

result section for the vehicular Fog computing environment,

response time is weighted (we1) at (0.60), makespan is

weighted (we2) at (0.20), and the cost is weighted (we3) at

(0.20). Response-time weightage is substantially higher since

data on traffic bottlenecks, humps, and when to apply breaks are

required on a high priority without delay for making decisions

and avoiding an accident.

V. RESULT AND DISCUSSION

This section delves into the experimental setup and contrasts

it with conventional procedures. All tests are conducted using

the iFogSim toolkit [37] on a system configured with an Intel

Core i7 processor, Windows 10 operating system, and 16GB of

RAM.

A. Experiment setup and dataset statistics

The data workflows used to assess the performance of

the proposed approach are extracted from real-world datasets,

namely, HPC2N and CEA-CURIE (source:

https://www.cs.huji.ac.il/labs/parallel/workload, accessed on

October 20, 2023). These workload logs encompass execution

traces resulting from concurrent HPC workload processing.

Table 2 depicts the actual workloads employed in this work. In

a real-world scenario, HPC2N and CEA-Curie have many

workloads, although we only used ten in this experiment.

TABLE II. ILLUSTRATION OF REAL WORKLOADS

Workload

Log

Parallel

Tasks
CPUs Users Filename

HPC2N 202871 240 257

HPC2N-

2002-2.2-

cln.swf

CEA

Curie
312826 93312 582

CEA-

Curie-

2011-2.1-

cln.swf

Both Fog and cloud nodes are used for simulation processing.

The experimental setup was evaluated using the parameters

Cost, makespan, and response-time. Each machine on Fog and

http://www.ijritcc.org/
https://www.cs.huji.ac.il/labs/parallel/workload

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 896
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Cloud has a different amount of bandwidth, processing power,

and RAM. In comparison to the cloud, Fog nodes have a lower

range of bandwidth, CPU frequencies, and RAM utilization.

The cost is expressed in terms of (Grid$). Table 3 describes the

Cloud and Fog scenario's configuration details.

TABLE III. CONFIGURATION OF CLOUD AND FOG SCENARIOS.

B. Simulation results

For simulation results evaluation, the suggested strategy is

compared to an existing technique that was implemented

utilizing optimization algorithms such as whale optimization,

earthworm, cuckoo search, and so on. We have compared our

proposed approach with five existing techniques including h-

DEWOA (hybrid-differential-evolution-enabled whale-

optimization algorithm) [38], cuckoo-search- differential

algorithm (CSDEO) [39], Cuckoo-search-particle-swarm-

optimization algorithm (CSPSO) [40], blacklist matrix-based-

multi-objective algorithm (BLEMO) [41], and EEOA (Electric-

earthworm-optimization algorithm) [10]. All comparisons are

performed over 30 iterations across 10 workloads from the

HPC2N and CEA-CURIE datasets.

C. Results for CEA-Curie workload

Figure 3 depicts the performance metric makespan comparative

results for the suggested strategy with all five strategies

discussed. According to the comparison data, CSPSO did not

outperform the other techniques; however, the value of

makespan for CSPSO is significantly larger than the other

strategies. The differential evolution technique is integrated

with the whale algorithm in the h-DEWOA approach since the

whale algorithm has the problem of remaining in local optima

and having a slow convergence speed. h-DEWOA also has poor

makespan results. On the performance measure makespan, the

suggested strategy beats all the mentioned techniques. The

approach benefits from dynamic machine allocation and a load

balancer approach, which constantly replicates the machine if

jobs with higher threshold values come during iterations. For

earlier workloads (WE01-WE05) proposed approach

performance is much better in comparison to other techniques

due to independent tasks and availability of resources & VMs.

in later workloads (WE06-WE10), tasks are highly dependent

and resource availability get lesser, that’s why makespan value

difference among proposed and traditional technique is noticed

less.

Figure 3. Best Makespan for CEA-Curie workload

As indicated in Table 4, the performance improvement rate is

calculated to determine the percentage of improvement of the

suggested method using all described techniques as shown in

Equation 16.
𝑝 (𝑝𝑟𝑒)−𝑝 (𝑝𝑟𝑜)

𝑝 (𝑝𝑟𝑜)
 (16)

Here, ppre is the old approach's makespan value, and ppro is the

suggested approach's makespan value. As illustrated in Table 4,

the proposed strategy outperforms the techniques. WE01 best

case makespan value of EEOA is 9987.45 for workload, and

9788.07 for the recommended technique, according to the PIR

equation
9987.45−9788.07

9788.07
 ͌ ͌ 2.04 %. As a result, the proposed

technique outperforms the EEOA by 2%.

TABLE IV. THE PERCENTAGE OF PERFORMANCE IMPROVEMENT FOR THE

BEST MAKESPAN IS INCLUSIVE OF THE CEA-CURIE WORKLOAD IN THE

PROPOSED APPROACH.

PIR (%) of the proposed approach with all existing techniques

Workloads Proposed

Vs

h-DEWOA

(%)

Proposed

Vs

CSDEO

(%)

Proposed

Vs

CSPSO

(%)

Proposed

Vs

BLEMO

 (%)

Proposed

Vs EEOA

(%)

WE01 4.98 12.07 29.50 4.21 2.04

WE02 26.83 38.54 63.81 17.03 1.05

WE03 7.82 17.50 62.80 13.68 1.94

WE04 21.78 24.61 40.16 14.14 2.38

WE05 17.80 29.58 53.86 14.19 2.49

WE06 20.92 40.36 73.97 26.87 1.75

WE07 8.55 15.97 23.43 15.03 1.15

WE08 18.28 34.71 76.54 17.25 1.38

WE09 5.33 20.53 65.84 32.03 2.69

WE10 30.08 42.46 127.87 46.76 1.83

Parameters Fog Cloud Units

Processing Speed [1000:2000] [3000:5000] MIPS

Bandwidth [128:1024] [512:4096] Mbps

RAM [250:5000] [5000:20000] MB

Cost [0.2:0.5] [0.6:1.0] G$

VMs Numbers [15,20,35] [10,15,20] VM

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 897
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 4. Cost comparison for CEA-Curie workload

Figure 4 depicts a cost comparison of the CEA-Curie workload,

with CSPSO having a greater cost in the system. For workloads

WE01-WE08, BLEMO, h-DEWOA, and CSDEO have roughly

the same cost. Our proposed method outperforms the EEOA

technique and improves performance by 2% on the CEA-curie

workload. Because VMs allocate properly, the suggested

technique operates efficiently and at a lower cost value. The

network is managed jointly by the load balancer and the

resource controller. If the load balancer sends an inquiry about

task mapping via the API gateway, the resource controller will

verify the available resources on each machine. Because no idle

machines will remain in the network, the proposed technique

will be less expensive.

Figure 5. Response-time comparison for CEA-Curie workload

On the CEA-Curie workload, Figure 5 depicts a response-time

comparison with existing approaches. In the system, response

time is calculated by combining communication and think time.

Because the CSPSO approach has a longer delay, its RT is

higher when compared to other techniques. CSDEO and

BLEMO task mapping are nearly identical. Both techniques are

vector-based, with a vector maintained for mapping tasks to

VMs. When compared to existing approaches, the proposed

methodology has a low RT. The whale optimization

exploitation phase aids in responding quickly to jobs. In

comparison, our algorithm performed admirably across all

workloads. In terms of performance, the proposed strategy

outperforms the techniques. The EEOA WE01 RT value for the

workload is 20.14, and the proposed method is 18.89, according

to the PIR calculation,
20.14−18.98

18.98
 ͌ 6.11 %. As a result, the

proposed technique outperforms the EEOA by 6%.

D. Results for HPC2N Workload

Figure 6 compares the suggested strategy to all other techniques

in terms of performance metric makespan. Figure 3 shows that

the CSPSO approach performs poorly on the HPC2N workload

for the Performance metric makespan. CSPSO's task mapping

technique is unable to operate on a high-performance network.

On 10 workloads, the h-DEWOA and BLEMO methods

perform equally well after 30 iterations. Our proposed strategy

outperformed existing techniques and performed better. Even

for the High-performance network dataset, VMs in the proposed

technique are correctly handled by the VM controller and

resource controller. Here, the Exploitation phase, which is

controlled by the whale optimization algorithm, is doing

admirably.

Figure 6. Best Makespan for HPC2N Workload

The proposed technique's performance increase rate is also

determined for the HPC2N workload in comparison to previous

strategies using Equation 16, as shown in Table 5. According to

the PIR equation, the best case makespan value of EEOA for

workload is 17612.19 for WE01 and 17225.72 for the proposed

approach,
17612.19−17225.72

17225.72
 ͌ 2.24%. Because of this, the

proposed technique outperforms EEOA by 2%.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 898
IJRITCC | October 2023, Available @ http://www.ijritcc.org

TABLE V. THE PERCENTAGE OF PERFORMANCE IMPROVEMENT FOR THE

BEST MAKESPAN IS ACHIEVED WITH THE INCLUSION OF THE HPC2N

WORKLOAD IN THE PROPOSED APPROACH.

PIR (%) of the proposed approach with all existing techniques

Workloads Proposed

Vs

 h-DEWOA

(%)

Proposed

Vs

CSDEO

(%)

Proposed

Vs

CSPSO

(%)

Proposed

Vs

BLEMO

(%)

Proposed

Vs

EEOA

(%)

WE01 6.75 13.76 25.53 19.66 2.25

WE02 11.16 22.83 47.36 8.99 1.45

WE03 7.32 14.81 30.45 7.49 2.22

WE04 3.53 12.42 35.17 4.81 1.58

WE05 19.73 39.48 69.51 28.71 2.99

WE06 15.48 25.24 78.33 31.58 2.12

WE07 7.80 11.31 62.77 18.25 2.25

WE08 11.71 26.43 78.17 28.53 1.93

WE09 41.37 43.13 79.44 73.08 2.40

WE10 54.80 75.91 80.66 78.36 1.88

Figure 7 compares the overall cost for the HPC2N workload,

where cost is expressed in G$. The cost factor is defined by

the bandwidth, CPU, and RAM of the parameter.

Figure 7. Cost comparison for HPC2N workload

According to Figure 7, the cost of CSPSO is substantially higher

than the cost of BLEMO and h-DEWOA. All techniques' costs

for workloads WE04 and WE05 have been raised. In

comparison to EEOA and other approaches, the proposed

technique is less expensive. Over the EEOA strategy, the

proposed approach outperforms it by 2%. The proposed

solution reduces the cost of employing VMs by generating them

dynamically based on the requirements [42]. However, in the

case of the CSPSO approach, all VMs are initialized without

regard for network load. As a result, the CSPSO technique is

substantially more expensive than other procedures.

Figure 8. Response-time comparison for HPC2N workload.

Figure 8 depicts a comparison of Response time on the HPC2N

workload with existing approaches. Similarly, for the HPC2N

task, the delay in the CSPSO approach is greater, hence the RT

of the CSPSO technique is greater when compared to all other

techniques. In contrast to existing approaches, our proposed

methodology exhibits a reduced response time (RT). Notably,

our algorithm consistently performed exceptionally well across

all workloads, outperforming existing techniques in terms of

overall performance. Specifically, for the workload, the EEOA

yielded a WE01 RT value of 23.58, whereas our proposed

technique achieved an improved RT of 22.18. Consequently,

based on the PIR calculation, there is a notable improvement of

approximately 6.31%. Thus, our proposed technique surpasses

the EEOA by 6% in terms of performance.

Figure 9. Objective Function value throughout a single run of the proposed

algorithm for CEA-Curie workload.

Figure 10. Objective Function value throughout a single run of the proposed

algorithm for HPC2N workload.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 899
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figures 9 and 10 display the objective function values

throughout a single run iteration for both the CEA-Curie and

HPC2N algorithms. As per Equation 11, the fitness value for

both the proposed and EEOA algorithms is calculated,

considering the values of We1 and We2, which are 0.2 and 0.6,

respectively. The suggested WEOA algorithm exhibits quicker

convergence compared to the EEOA algorithm. The results

indicate that, when contrasted with the EEOA algorithm, the

suggested WEOA algorithm effectively explored the solution

space and reached the optimal value within a comparable

timeframe.

Figure 11. Degree of imbalance of the offloaded the tasks.

Figure 11 depicts the degree of imbalance for the EEOA

algorithm and the proposed approach using the same previous

parameter settings as the number of IoT nodes increases. The

graph demonstrates that the suggested WEOA algorithm

maintains less values. This suggests that the proposed approach

successfully distributes the workload across the Fog nodes.

TABLE VI. ANOVA STATISTICAL ANALYSIS: TWO FACTOR WITHOUT

REPLICATION FOR DEGREE OF IMBALANCE

Source of

Variation SS df MS F P-value F crit

Rows 0.050375 5 0.010075 30.68528 0.000929 5.050329

Columns 0.003008 1 0.003008 9.162437 0.029183 6.607891

Error 0.001642 5 0.000328

Total 0.055025 11

Table 6 shows the results of an ANOVA statistical analysis

of two factors without replication on the degree of imbalance.

The proposed algorithms outperform traditional algorithms in

terms of analytical efficiency. In statistical analysis, a p-value

less than 0.05 and an F crit value less than F demonstrate the

capability of the suggested approach. According to this analysis,

the proposed approach is superior for handling optimization

challenges on the IoT-Fog-Cloud system.

VI. CONCLUSION AND FUTURE WORK

The novel WEOA is a hybrid algorithm that combines elements

of the Whale Optimization and Earthworm Optimization

algorithms within the load balancer which effectively strikes a

balance between exploration and exploitation in these

approaches. an effective task allocation technique is introduced

via the load balancer. The proposed algorithms are compared

against five competing optimization techniques, considering key

parameters such as cost, makespan, and response time using the

HPC2N and CEA-CURIE datasets. The approach using the load

balancer outperforms h-DEWOA, CSDEO, CSPSO, BLEMO,

and EEOA by up to 6% in response time, 2% in cost, and 2% in

makespan compared to EEOA. Furthermore, it achieves

remarkable results, surpassing h-DEWOA, CSDEO, CSPSO,

and BLEMO by up to 82% in response time, up to 75% in cost,

and up to 80% in makespan. In the future, task offloading could

incorporate machine learning models to anticipate and predict

job arrivals and placement order, potentially enhancing Quality

of Service (QoS) optimization in fog-cloud-based systems.

REFERENCES

[1] N. EA, D. Tamilarasi, S. Sasikala, R. R. Nair, and K. . Uma, “An

Efficient Food Quality Analysis Model (EFQAM) using the

Internet of Things (IoT) Technologies,” Microprocess.

Microsyst., p. 103972, 2021, doi: 10.1016/j.micpro.2021.103972.

[2] Y. Ramzanpoor, M. Hosseini Shirvani, and M.

Golsorkhtabaramiri, Multi-objective fault-tolerant optimization

algorithm for deployment of IoT applications on fog computing

infrastructure, vol. 8, no. 1. Springer International Publishing,

2022. doi: 10.1007/s40747-021-00368-z.

[3] M. Gorlatova, H. Inaltekin, and M. Chiang, “Characterizing task

completion latencies in multi-point multi-quality fog computing

systems,” Comput. Networks, vol. 181, no. December 2019, p.

107526, 2020, doi: 10.1016/j.comnet.2020.107526.

[4] R. and S. N. and S. P. Tiwari Rajeev and Sille, “Utilization and

Energy Consumption Optimization for Cloud Computing

Environment,” in Cyber Security and Digital Forensics , 2022, pp.

609–619.

[5] M. Mehmood, N. J. B, and J. Akram, Efficient Resource

Distribution in Cloud, vol. 1. Springer International Publishing,

2019. doi: 10.1007/978-3-319-98530-5.

[6] M. S. Qureshi et al., “A comparative analysis of resource

allocation schemes for real-time services in high-performance

computing systems,” Int. J. Distrib. Sens. Networks, vol. 16, no.

8, 2020, doi: 10.1177/1550147720932750.

[7] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance

evaluation metrics for cloud, fog and edge computing: A review,

taxonomy, benchmarks and standards for future research,”

Internet of Things, vol. 12, p. 100273, 2020, doi:

10.1016/j.iot.2020.100273.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 900
IJRITCC | October 2023, Available @ http://www.ijritcc.org

[8] A. Abouaomar, S. Cherkaoui, A. Kobbane, and O. A. Dambri, “A

resources representation for resource allocation in fog computing

networks,” 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019

- Proc., 2019, doi: 10.1109/GLOBECOM38437.2019.9014146.

[9] P. Albert and M. Nanjappan, “WHOA: Hybrid Based Task

Scheduling in Cloud Computing Environment,” Wirel. Pers.

Commun., vol. 121, no. 3, pp. 2327–2345, 2021, doi:

10.1007/s11277-021-08825-1.

[10] C. Framework, “EEOA : Cost and Energy Efficient Task

Scheduling in a Cloud-Fog Framework,” 2023.

[11] N. Sarrafzade, R. Entezari-Maleki, and L. Sousa, “A genetic-

based approach for service placement in fog computing,” J.

Supercomput., vol. 78, no. 8, pp. 10854–10875, 2022, doi:

10.1007/s11227-021-04254-w.

[12] A. M. Yadav, K. N. Tripathi, and S. C. Sharma, “An enhanced

multi-objective fireworks algorithm for task scheduling in fog

computing environment,” Cluster Comput., vol. 25, no. 2, pp.

983–998, 2022, doi: 10.1007/s10586-021-03481-3.

[13] D. Javaheri, S. Gorgin, J. A. Lee, and M. Masdari, “An improved

discrete harris hawk optimization algorithm for efficient

workflow scheduling in multi-fog computing,” Sustain. Comput.

Informatics Syst., vol. 36, p. 100787, Dec. 2022, doi:

10.1016/J.SUSCOM.2022.100787.

[14] N. Abu-Amssimir and A. Al-Haj, “A QoS-aware resource

management scheme over fog computing infrastructures in IoT

systems,” Multimed. Tools Appl., 2023, doi: 10.1007/s11042-

023-14856-6.

[15] A. Maatoug, G. Belalem, and S. Mahmoudi, “A location-based

fog computing optimization of energy management in smart

buildings: DEVS modeling and design of connected objects,”

Front. Comput. Sci., vol. 17, no. 2, p. 172501, 2022, doi:

10.1007/s11704-021-0375-z.

[16] S. O. Ogundoyin and I. A. Kamil, “Optimal fog node selection

based on hybrid particle swarm optimization and firefly algorithm

in dynamic fog computing services,” Eng. Appl. Artif. Intell., vol.

121, p. 105998, 2023, doi:

https://doi.org/10.1016/j.engappai.2023.105998.

[17] M. M. Hussain et al., “SONG: A Multi-Objective Evolutionary

Algorithm for Delay and Energy Aware Facility Location in

Vehicular Fog Networks,” Sensors, vol. 23, no. 2, 2023, doi:

10.3390/s23020667.

[18] M. Ghobaei-Arani and A. Shahidinejad, “A cost-efficient IoT

service placement approach using whale optimization algorithm

in fog computing environment,” Expert Syst. Appl., vol. 200, no.

May 2021, p. 117012, 2022, doi: 10.1016/j.eswa.2022.117012.

[19] S. Kumar and R. Tiwari, “Dynamic popularity window and

distance-based efficient caching for fast content delivery

applications in CCN,” Eng. Sci. Technol. an Int. J., vol. 24, no. 3,

pp. 829–837, 2021, doi: 10.1016/j.jestch.2020.12.018.

[20] S. Kaur, Y. Kumar, A. Koul, and S. Kumar Kamboj, “A

Systematic Review on Metaheuristic Optimization Techniques

for Feature Selections in Disease Diagnosis: Open Issues and

Challenges,” Arch. Comput. Methods Eng., vol. 30, no. 3, pp.

1863–1895, 2023, doi: 10.1007/s11831-022-09853-1.

[21] K. Kaur, S. Garg, G. Kaddoum, F. Gagnon, and D. N. K.

Jayakody, “EnLoB: Energy and load balancing-driven container

placement strategy for data centers,” 2019 IEEE Globecom Work.

GC Wkshps 2019 - Proc., pp. 1–6, 2019, doi:

10.1109/GCWkshps45667.2019.9024592.

[22] M. and G. S. and K. S. Tiwari Rajeevand Mittal, “Energy-Aware

Resource Scheduling in FoG Environment for IoT-Based

Applications,” in Energy Conservation Solutions for Fog-Edge

Computing Paradigms, M. and G. L. M. Tiwari Rajeevand Mittal,

Ed. Singapore: Springer Singapore, 2022, pp. 1–19. doi:

10.1007/978-981-16-3448-2_1.

[23] L. Abualigah and A. Diabat, “A novel hybrid antlion optimization

algorithm for multi-objective task scheduling problems in cloud

computing environments,” Cluster Comput., vol. 24, no. 1, pp.

205–223, 2021, doi: 10.1007/s10586-020-03075-5.

[24] A. Kishor and C. Chakarbarty, “Task Offloading in Fog

Computing for Using Smart Ant Colony Optimization,” Wirel.

Pers. Commun., no. 0123456789, 2021, doi: 10.1007/s11277-

021-08714-7.

[25] M. Haghi Kashani, A. M. Rahmani, and N. Jafari Navimipour,

“Quality of service-aware approaches in fog computing,” Int. J.

Commun. Syst., vol. 33, no. 8, pp. 1–34, 2020, doi:

10.1002/dac.4340.

[26] A. M. Senthil Kumar and B. Kasireddi, “An efficient task

scheduling method in a cloud computing environment using

firefly crow search algorithm (FF-CSA),” Int. J. Sci. Technol.

Res., vol. 8, no. 12, pp. 623–627, 2019.

[27] T. and T. V. and T. R. Lal Gunjanand Goel, “Performance Tuning

Approach for Cloud Environment,” in Intelligent Systems

Technologies and Applications 2016, 2016, pp. 317–326.

[28] F. M. Talaat, “Effective prediction and resource allocation

method (EPRAM) in fog computing environment for smart

healthcare system,” Multimed. Tools Appl., vol. 81, no. 6, pp.

8235–8258, 2022, doi: 10.1007/s11042-022-12223-5.

[29] G. Goel and R. Tiwari, “Resource scheduling in fog environment

using optimization algorithms for 6G networks,” Int. J. Softw.

Sci. Comput. Intell., vol. 14, no. 1, pp. 1–24, 2022.

[30] M. R. Alizadeh, V. Khajehvand, A. M. Rahmani, and E. Akbari,

“Task scheduling approaches in fog computing: A systematic

review,” Int. J. Commun. Syst., vol. 33, no. 16, pp. 1–36, 2020,

doi: 10.1002/dac.4583.

[31] R. and A. A. and K. S. Goel Gauravand Tiwari, “Workflow

Scheduling Using Optimization Algorithm in Fog Computing,” in

International Conference on Innovative Computing and

Communications, 2022, pp. 379–390.

[32] D. Rahbari and M. Nickray, “Low-latency and energy-efficient

scheduling in fog-based IoT applications,” Turkish J. Electr. Eng.

Comput. Sci., vol. 27, no. 2, pp. 1406–1427, 2019, doi:

10.3906/elk-1810-47.

[33] M. Abdel-Basset, R. Mohamed, R. K. Chakrabortty, and M. J.

Ryan, “IEGA: An improved elitism-based genetic algorithm for

task scheduling problem in fog computing,” Int. J. Intell. Syst.,

vol. 36, no. 9, pp. 4592–4631, 2021, doi: 10.1002/int.22470.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 15 August 2023 Revised: 25 September 2023 Accepted: 06 October 2023

 901
IJRITCC | October 2023, Available @ http://www.ijritcc.org

[34] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-

Based Approximate Constrained Shortest Distance Queries over

Encrypted Graphs with Privacy Protection,” IEEE Trans. Inf.

Forensics Secur., vol. 13, no. 4, pp. 940–953, 2018, doi:

10.1109/TIFS.2017.2774451.

[35] M. I. Naas, L. Lemarchand, P. Raipin, and J. Boukhobza, “IoT

Data Replication and Consistency Management in Fog

Computing,” J. Grid Comput., vol. 19, no. 3, p. 33, 2021, doi:

10.1007/s10723-021-09571-1.

[36] M. S. Hassan, W. G. Aref, and A. M. Aly, “Graph indexing for

shortest-path finding over dynamic sub-graphs,” Proc. ACM

SIGMOD Int. Conf. Manag. Data, vol. 26-June-20, pp. 1183–

1197, 2016, doi: 10.1145/2882903.2882933.

[37] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,

“iFogSim: A toolkit for modeling and simulation of resource

management techniques in the Internet of Things, Edge and Fog

computing environments,” Softw. Pract. Exp., vol. 47, no. 9, pp.

1275–1296, 2017.

[38] A. Chhabra, S. K. Sahana, N. S. Sani, A. Mohammadzadeh, and

H. A. Omar, “Energy-Aware Bag-Of-Tasks Scheduling in the

Cloud Computing System Using Hybrid Oppositional Differential

Evolution-Enabled Whale Optimization Algorithm,” Energies,

vol. 15, no. 13, 2022, doi: 10.3390/en15134571.

[39] A. Chhabra, G. Singh, and K. S. Kahlon, “Multi-criteria HPC task

scheduling on IaaS cloud infrastructures using meta-heuristics,”

Cluster Comput., vol. 24, pp. 885–918, 2021.

[40] A. Chhabra, G. Singh, and K. S. Kahlon, “QoS-aware energy-

efficient task scheduling on HPC cloud infrastructures using

swarm-intelligence meta-heuristics,” Comput. Mater. Contin, vol.

64, pp. 813–834, 2020.

[41] S. Vila, F. Guirado, J. L. Lerida, and F. Cores, “Energy-saving

scheduling on IaaS HPC cloud environments based on a multi-

objective genetic algorithm,” J. Supercomput., vol. 75, no. 3, pp.

1483–1495, 2019.

[42] Sharma, T., & Rattan, D. (2021). Malicious application detection

in android—a systematic literature review. Computer Science

Review, 40, 100373.

http://www.ijritcc.org/

