
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 
 

 

    3415 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Generative Adversarial Network with Convolutional 

Wavelet Packet Transforms for Automated Speaker 

Recognition and Classification 

Venkata Subba Reddy Gade1 
Research Scholar  

            Dept.of ECE, Sathyabama Institute of Engineering and Technology 

Chennai, India 

                             Associate Prof, Dept. of ECE, Gokaraju Rangaraju Institute  of Engineering and Technology ,Hyderabad, India 

Email:gvsreddy2005@gmail.com 
 

Dr. M Sumathi2 
Prof, Dept. of ECE, Sathyabama Institute of Science and Technology 

Chennai, India 
Email:sumagopi206@gmail.com 

 

Abstract—Speech is an effective mode of communication that always conveys abundant and pertinent information, such as the gender, accent, 

and other distinguishing characteristics of the speaker. These distinctive characteristics allow researchers to identify human voices using 

artificial intelligence (AI) techniques, which are useful for forensic voice verification, security and surveillance, electronic voice eavesdropping, 

mobile banking, and mobile purchasing. Deep learning (DL) and other advances in hardware have piqued the interest of researchers studying 

automatic speaker identification (SI). In recent years, Generative Adversarial Networks (GANs) have demonstrated exceptional ability in 

producing synthetic data and improving the performance of several machine learning tasks. The capacity of Convolutional Wavelet Packet 

Transform (CWPT) and Generative Adversarial Networks are combined in this paper to propose a novel way of enhancing the accuracy and 

robustness of Speaker Recognition and Classification systems. Audio signals are dissected using the Convolutional Wavelet Packet Transform 

into a multi-resolution, time-frequency representation that faithfully preserves local and global characteristics. The improved audio features 

better precisely describe speech traits and handle pitch, tone, and pronunciation variations that are frequent in speaker recognition tasks. Using 

GANs to create synthetic speech samples, our suggested method GAN-CWPT enriches the training data and broadens the dataset's diversity. The 

generator and discriminator components of the GAN architecture have been tweaked to produce realistic speech samples with attributes quite 

similar to genuine speaker utterances. The new dataset enhances the Speaker Recognition and Classification system's robustness and 

generalization, even in environments with little training data. We conduct extensive tests on standard speaker recognition datasets to determine 

how well our method works. The findings demonstrate that, compared to conventional methods, the GAN-CWPTs combination significantly 

improves speaker recognition, classification accuracy, and efficiency. Additionally, the suggested model GAN-CWPT exhibits stronger 

generalization on unknown speakers and excels even with loud and poor audio inputs. 

Keywords-Automated Speaker Recognition, Deep learning, Artificial intelligence Generative Adversarial Networks (GANs), Convolutional 

Wavelet Packet Transform (CWPT). 

 

I. INTRODUCTION 

Speech is the primary and inborn mechanism of human 

contact, efficiently and quickly transmitting important 

information. People devote time and effort to learning to use 

voice commands to interact with smart devices. In all, 7097 

live languages have been shown to exhibit distinctive speech 

patterns [1]. At least one person uses a living language as their 

primary communication. Less than 23 languages, including 

Spanish, English, Chinese, and Hindi, are spoken by more than 

50% of the world's population. Given that more languages are 

spoken on Earth than people, this number continues to be 

astounding. However, these few languages have a significant 

influence. They are essential to the development of AI 

disciplines, including Text-To-Speech (TTS), Computational 

Linguistics (CL), Natural Language Processing (NLP), and 

Automatic Speech Recognition (ASR).In contrast, it might be 

difficult for less widely used languages to get financing for 

specialized technological research and development [2]. 

Creating similar solutions for languages with limited resources 

is a difficult but necessary task. 

ASR, also known as automatic speech recognition, has many 

applications in security, education [3], smart healthcare [4], 

and smart cities [5], making it a hotly debated and researched 

topic. Multiple algorithms are used in this process to correlate 

textual patterns with recognized speech signals, translating 

spoken language into written text [6]. The primary objective of 

automatic speech recognition (ASR) is to transform audio 

signals into text using a robust framework that integrates state-

of-the-art semantic learning techniques. ASR integrates 
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several fields, including computer science, linguistics, AI, 

digital signal processing, acoustics, and statistics. 

Recent advancements in ASR have been made possible by 

implementing different DL methods. Successful automatic 

speech recognition (ASR) engines have been built for 

European, English, and Asian languages by major computer 

companies like Microsoft, Apple, Amazon, Facebook, Google, 

and IBM. The advancement of automatic speech recognition 

(ASR) systems for Central Asian languages like Uzbek 

remains in its infancy. dialectal differences and the lack of a 

standardized Uzbek speech corpus mainly cause this. One of 

the key challenges is the lack of speech corpora needed to 

create an ASR system for Central Asian languages. Test 

results may be significantly improved with an appropriate 

classification methodology for the ASR system, and 

computing complexity may increase. One of the challenges in 

creating an ASR system is finding an appropriate speech 

corpus and acquiring the necessary data for training and 

testing the system. These training datasets are now only 

available for about 7,000 of the world's most widely spoken 

languages [7]. 

Generative Adversarial Networks (GANs) have developed as a 

game-changing way to learn complex data distributions and 

create realistic samples. The two neural networks that make up 

a GAN, the discriminator and the generator, engage in a 

strategic game of rivalry to enhance the quality of the data 

they generate. GANs, first introduced for picture synthesis, 

have been effectively extended to various domains, including 

speech and audio processing, powering rapid advances in 

automated speaker detection and categorization. The key 

concept behind employing GANs for automatic speaker 

detection and classification is to use their ability to capture 

underlying data distributions and generate synthetic but highly 

representative speech samples. In this technique, Generative 

Adversarial Networks (GANs) play an important role in 

augmenting existing training data, effectively solving the 

obstacle of insufficient labeled datasets—a prevalent problem 

in speech recognition systems. Furthermore, GAN-based 

algorithms provide greater generalization, increased resilience 

in noisy situations, and adaptability to different speech accents 

and languages. 

The Continuous Wavelet Packet Transform (CWPT) is at the 

forefront of innovative techniques for extracting features in 

voice recognition and classification problems. CWPT, which 

serves as an improved iteration of traditional wavelet 

transformation methods, combines the strengths of both 

wavelets and convolutional neural networks (CNNs), resulting 

in a powerful tool for interpreting and representing complex 

audio data. By integrating wavelets' time-frequency analysis 

capabilities with CNNs' hierarchical learning capabilities, 

CWPT aims to improve feature discrimination, resulting in 

more precise and robust speaker identification. 

This study provides a ground-breaking mechanism for speaker 

classification and automatic recognition. The technique 

dramatically improves the accuracy and efficiency of the 

process by combining Generative Adversarial Networks 

(GANs) and CWPT.Our innovative framework addresses the 

drawbacks of conventional speaker identification algorithms, 

which commonly fail to distinguish speakers accurately in 

challenging situations, including background noise, varying 

emotional states, and insufficient training data. 

This study's primary objective is to show how the 

recommended approach may teach resilient and discriminative 

skills for speaker identification, even in challenging 

circumstances. Our strategy intends to dramatically improve 

the performance and generalization of automated speaker 

recognition systems by combining the GAN's capacity to 

produce realistic samples with the CWPT's powerful feature 

extraction capabilities. 

The following is a summary of this paper's significant 

contributions: 

• To improve the precision and robustness of Speaker 

Recognition and Classification systems, GAN -

CWPT are merged in a novel way.  

• Audio signals are dissected using the CWPT into a 

multi-resolution, time-frequency representation that 

faithfully preserves local and global characteristics.  

• To improve audio features, better precisely describe 

speech traits and handle pitch, tone, and 

pronunciation variations that are frequent in speaker 

recognition tasks. Using GANs to create synthetic 

speech samples, our suggested method GAN-CWPT 

enriches the training data and broadens the dataset's 

diversity.  

• The new dataset enhances the Speaker Recognition 

and Classification system's robustness and 

generalization, even in environments with little 

training data.  

• Conduct extensive tests on standard speaker 

recognition datasets to determine how well our 

method works.  

• The findings show that incorporating GAN-CWPTs 

significantly improves speaker recognition and 

classification efficiency and accuracy compared to 

standard methods. 

The remainder of this essay is organized as follows: The 

literature survey of speech processing is examined in Section 

2. Section 3 expands on the proposed methodology by delving 

into the architecture of the GAN-CWPT. Section 4 explains 

the experimental setup and assessment measures used to assess 

the performance of our model. Section 5 concludes by 

summarizing our contributions and outlining potential future 

research possibilities. 

II. LITERATURE SURVEY 

Ismail et al. [8] produced speech datasets in English and Urdu 

with five distinct regional accents used in GB, a region in 

northern Pakistan. These datasets are meant to promote and 

advance speaker recognition system research. The voice 

datasets comprise 7200 speech samples from 180 speakers, 

with identifying information, specific words, and 10- to 16-

digit numeric strings. Four machine learning methods were 

trained on pre-processed datasets to extract speech attributes: 

RF, ANN, SVM, and KNN. With accuracy improvements of 

88.53% and 86.58%, respectively, the ANN classifier model 

outperformed RF, SVM, and KNN, according to the English 

and Urdu datasets analysis. 
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Mokgonyane et al. [9] developed a text-independent speech 

detection system based on machine learning. The research 

involved many procedures, including testing and training. 

These procedures included feature extraction, model training, 

evaluation, speech activity detection, and a graphical user 

interface. The Sepedi speech dataset was made available by 

the NCHLT project. The Long-Term Spectral Divergence 

approach was used to identify speech activity, and the 

pyAudio Analysis program was used for feature extraction. 

Weka's SVM, KNN, RF, and MLP implementations were used 

to train the models.  

Kamiski et al. [10] developed the ASR System to address 

concerns with speaker identification in open set settings and 

speaker verification in difficult recording circumstances such 

as telephone communications. According to their research 

based on a validated voice dataset, the developed speaker 

recognition system outperformed rival systems in both speaker 

identification and verification tasks. The internal settings and 

features of the ASR System are optimized via genetic 

algorithms. Gaussian mixture model feature creation and 

categorization had an impact on this as well.  

Dhakal et al. [11] developed a new high-speed pipelined 

architecture for real-time speaker detection. To address this 

issue, the proposed intelligent system accurately recognizes 

approved users. GF, CNN, and statistical considerations all aid 

in extracting features. According to our investigation, the 

feature extraction methods already described and RF proved to 

be the most effective at obtaining and classifying speaker 

recognition features. Success in these feature extraction and 

categorization processes will determine how accurate our 

suggested design is. RF outperformed the other two voice 

recognition systems in rigorous testing with many datasets. 

Ye et al. [12] developed the topic of speaker identification 

research. We created a deep RNN model with a 2-D CNN 

layer that incorporates rich voiceprint information from speech 

spectrograms and the efficiency of 2-D CNN in extracting 

features from 2-D structures. This method creates a robust 

identification system by fusing the 2-D CNN's feature 

extraction capabilities with the GRU cell units' temporal 

dynamics. Using GRU cell units and cyclic memory learning, 

we integrated time series into deep RNN networks to capture 

the unique characteristics of each speaker hierarchically. A 

softmax classifier layer that learns and distinguishes speaker 

traits is present in the top layer.  

Ibrahim et al. [13] investigated the application and 

significance of voice recognition systems. The report looked at 

research on automated speech recognition and voice 

recognition systems. According to an assessment of the 

literature, the HTK system, developed by a Cambridge 

University team led by Steve Young, is the most well-known 

software program for automatic speech recognition. Sarma et 

al. [14] recommended utilizing emotion-invariant speaker 

embedding to transform i-vectors holding speaker-specific 

information into an emotion-invariant space. Regarding 

accuracy, the suggested strategy fared better than a framework 

that used a regular speaker model and a spectrum of emotions. 

Shafik et al. [15] used radon transforms and spectrograms of 

audio signals to create a CNN-based model for speech 

recognition. The model maintains high precision even when 

the signal is corrupted by external factors such as musical 

interference or the speech of another speaker 

Costantini et al.'s study [16] explores high-level AI approaches 

for speaker detection without using speaker-specific models. A 

shallow, custom CNN architecture outperforms AlexNet 

trained on the ImageNet dataset (90.15% accuracy) among the 

several CNN architectures studied. The most accurate are 

grayscale spectrograms, which even exceed MFCC graphs. 

Despite being a significantly lighter model, its accuracy falls 

short of a Nave Bayes trained on chosen acoustic features at 

87.09%. Pitch/F0, MFCC, and voicing likelihood have been 

determined to be the most useful acoustic variables for 

categorizing various domains. 

Li et al. [17] of Microsoft Speech and Language Group 

developed an RNN-T model encoder that uses CTC or Cross-

Entropy (CE) training. The WER was decreased by 11.6% 

when the RNN-T encoder was initialized with CE, but it was 

increased by 12.8% when the future context model was 

compared to the zero-lookahead model.Transcripted Microsoft 

data totaling 65,000 hours made up the model's training data. 

However, Khassanov et al. [18] produced a Kazakh language 

voice corpus with more than 332 hours of audio transcribed 

and more than 153,000 utterances from people of all ages, 

genders, and regions. They used the text in Kazakh from 

various sources, including Wikipedia, online journals, blogs, 

and laws, to construct this corpus. A web-based speech-

recording program that can be used from desktop computers 

and mobile devices was then used to narrate these sentences. 

Earlier research focused on creating speech recognition for the 

Uzbek language. 

2.1 Limitations for Existing system 

• Speaker identification algorithms rely substantially 

on vast amounts of high-quality labeled data for 

training. However, getting such data can be difficult 

and costly, particularly for narrow or specific speaker 

categories. The model's accuracy and generalization 

may need to be improved due to limited and biased 

training data. 

• Speaker identification models trained on a single 

language may need help generalizing to different 

languages or dialects. Phonetic structures, accents, 

and speaking styles can all substantially impact the 

system's performance. 

• Background noise, reverberations, and other acoustic 

fluctuations in real-world contexts can reduce the 

accuracy of speaker recognition systems. The 

existence of such noise might result in false positives 

or false negatives, lowering system reliability. 

• Individuals' voices can alter owing to various 

circumstances, such as age, health, emotions, or the 

situation in which they speak. The system must 

account for intra-speaker variability for successful 

classification while maintaining inter-speaker 

distinctiveness. 

• The distribution of speakers across classes may need 

to be more balanced in many speaker recognition 

programs. This can result in biased models that 
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perform better on majority speakers while failing on 

minority ones. 

• Spoofing attacks on automated speaker identification 

systems occur when malicious individuals attempt to 

mimic or trick the system using voice recordings or 

speech synthesis techniques. Creating effective anti-

spoofing techniques is a continuing issue. 

2.2 Problem Identification for Existing system 

• One of the most challenging tasks in automated 

speaker recognition and classification is effectively 

identifying and distinguishing distinct speakers based 

on their speech characteristics. To give consistent 

results among varied speakers, the system must be 

able to handle changes in speech patterns, accents, 

and emotional states. 

• Real-world circumstances frequently bring 

environmental elements such as background noise, 

reverberation, and channel distortions, all of which 

can substantially impact the quality of audio samples. 

The system must be strong enough to withstand these 

conditions and accurately recognize speakers even in 

difficult acoustic situations. 

• As the number of speakers and audio samples 

increases, managing a large-scale speaker database 

efficiently becomes increasingly important. The 

system should be able to handle massive data storage, 

retrieval, and indexing operations while also ensuring 

efficient and precise search and categorization 

processes. 

• In some applications, such security systems and call 

center operations, real-time speech detection and 

classification are essential. In order to meet the 

demands of such time-sensitive scenarios, the system 

must have low latency and quick response times. 

• Automated speaker identification systems commonly 

deal with sensitive data, such as voiceprints or 

biometric information. It is essential to protect the 

security and privacy of this data in order to avoid 

misuse, unwanted access, and potential data breaches. 

• The system should be able to recognize and classify 

speakers of different languages in a worldwide 

context. While taking into consideration differences 

in pronunciation, intonation, and other language-

specific characteristics, it must handle the difficulties 

of cross-linguistic and multilingual speaker 

recognition. 

III. PROPOSED SYSTEM 

This section explains GAN-CWPT, a revolutionary method for 

improving Speaker Recognition and Classification systems' 

precision and robustness. The CWPT is used to segment audio 

data into a multi-resolution, time-frequency representation that 

correctly preserves both local and global properties. As a 

result of the improved audio features, speaker recognition 

tasks can more precisely account for variations in pitch, tone, 

pronunciation, and other speech characteristics. Our suggested 

method, GAN-CWPT, uses GANs to create artificial speech 

samples, which enhances the training data and broadens the 

dataset. The generator and discriminator components of the 

GAN architecture have been altered to produce realistic voice 

samples with traits very similar to genuine speaker utterances. 

Thus, the new dataset improves the Speaker Recognition and 

Classification system's robustness and generalization even in 

contexts with minimal training data. We extensively test well-

known speech recognition datasets to gauge how effectively 

our approach performs.  

The GAN-CWPT technique's block diagram is shown in Fig. 

1. First noticed from the speech input signal. Pre-processing is 

essential in systems when background noise or calm is 

undesirable. Effective feature extraction techniques from 

speech signals, the majority of which contain speaker-related 

information, are required by methods such as SI and Speech 

Recognition (SR). It has been demonstrated that Generative 

Adversarial Networks (GANs) are extremely proficient at 

producing fictional data and improving the efficiency of 

various machine-learning tasks. Convolutional Wavelet Packet 

Transform (CWPT) and Generative Adversarial Networks 

(GANs) produce Speaker Recognition and Classification 

systems with increased precision and durability. In actual use, 

feature extraction reduces the data dimensions of spoken 

signals while maintaining the integrity of essential 

information. Front-end processing, including feature extraction 

from speech signals, is carried out during the training and 

recognition phases. In feature extraction, sets of numerical 

descriptors or feature vectors that contain essential aspects of 

the speaker's voice are extracted from digital speech signals. 

Speech signals include various information, not all required 

for speaker identification. Finally, the decision of voice is 

accepted or rejected. 

 

Figure 1: block diagramof GAN-CWPT method 

3.1. Dataset 

The National Centre provided the dataset for this investigation 

for the Human Language Technology (NCHLT) project of the 

Language Resource Management Agency [19]. The collection 

includes audio recordings of Sepedi voices made by various 
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speakers. Apiece of the 50 speakers that participated in our 

data collection provided 100 audio samples with 3-5 words 

apiece. As can be seen in Table 1, a total of 5000 audio files 

were used, totalling 294.6 minutes in length. 

Table 1: Summary of the 100 Speaker Dataset 

Unit Value 

Size 548 MB 

Duration 294.6 minutes 

Instances 5000 

 

3.2 Speech pre-processing and segmentation 

We provide an overview of the many pre-processing 

techniques researchers employ in various speaker 

identification domains in this section. In systems where 

background noise or stillness is not required, efficient feature 

extraction methods are essential. This is crucial for voice 

identification and speech recognition (SR) systems, mainly 

since a large amount of the uttered segment carries properties 

specific to the speaker [20]. The various pre-processing 

techniques used in different speaker identification research 

projects are described in depth in the next section. 

3.2.1. Silence removal  

There may be silence at several moments during the speech 

signal, such as at the beginning, in between the syllables of the 

sentence, and at the conclusion. Voice signals' unspoken 

portions are cut out to reduce processing time and complexity. 

Unspoken components must therefore be eliminated before 

continuing with the process. The unknown parts of a voice 

signal are successfully eliminated by utilizing statistical 

background-noise features to categorize each sample as either 

uttered or unuttered. Each voice sample's mean and standard 

deviation are computed as surveys: 

1
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Where the speech signal, mean, and standard deviation are 

represented by y (t), background noise is described by 

Equations 1 and 2. The sample is regarded as spoken if the 

one-dimensional Mahalanobis distance function, or 

(| | / ) 3y  −   for each sample, is greater than zero. 

3.2.2. Pre-emphasis 

Pre-emphasis is a filtering technique that emphasizes higher 

frequencies in spoken input. This technique attempts to 

equalize the frequency spectrum of spoken sounds, which 

often exhibits a steep fall in the upper-frequency area. The 

glottal source has an octave slope of roughly 12 dB for spoken 

sounds, but acoustic energy from the lips generates a +6 

dB/octave increase in the spectrum. As a result, when a voice 

is recorded by a microphone that is situated at a distance, the 

recorded spectrum differs from the genuine vocal tract 

spectrum by roughly -6dB/octave. The use of pre-emphasis 

helps to lessen some of the overt glottal effects that are present 

in spoken speech. The pre-emphasis filter's most well-known 

substitute is. 

1( ) 1H z z −= −
             (3)

 

The range from -0.97 to 1 determines the pre-emphasis filter's 

slope. Both the overall energy level and the distribution of 

energy across various frequencies are altered by this filter. 

This may significantly impact the acoustic qualities related to 

energy. 

3.2.3. Framing 

As depicted in Fig. 2, signal framing is a technique for 

splitting a continuous speech signal into fixed-length chunks. 

Because the signal is nonstationary, the speaker's 

characteristics can change while speaking. In comparison, 

speech signals are projected to be steady for only 20 to 30 

milliseconds. By dividing the signal into frames, it is possible 

to identify this stability and retrieve the pertinent acoustic 

properties. Furthermore, overlapping two successive frames 

makes it feasible to keep the information between them. There 

is a ten-millisecond gap between each succeeding frame, with 

each frame typically lasting 25 milliseconds. 

3.2.4. Windowing  

Due to their non-stationary nature and the changing statistical 

properties they display over time, voice signals cannot be 

subjected to DFT. These traits consist of random alterations in 

the vocal tract, prosody changes, and spectral patterns. 

However, the statistical characteristics of speech signals 

remain constant for most phonemes within brief periods of 10–

20 ms. As a result, it is possible to apply standard signal 

processing techniques inside these time intervals, known as 

frames made up of N samples. Speech processing systems 

frequently split signals into overlapping frames and apply a 

Hamming window to each frame using Eq. 4 to extract 

information. Any potential spectral aberrations are lessened as 

a result. 

2
( ) 0.54 0.64cos ,0

1

m
w m m M

M

 
= −   

−         (4) 

 

The amount of examples in each frame is indicated by the 

"M." Below is a description of the windowed speech signal's 

output: 
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The most widely used windowing functions are hanging half 

parallelograms and triangles. 

3.2.5. Endpoint detection 

This technique entails separating speech signal fragments from 

an ambient noise background. This background noise has a 

normal distribution because it is classified as white noise. A 

mathematical viewpoint is that. 

2
1 1

( ) exp
22

x
p y





 − 
= −                               (6)

 

The initial 3200 voice samples of a spoken phrase designated 

as background noise are used to compute the parameters σ and 

µ in the given equation. As a result, word Y is classified as a 

component of the white-noise distribution, and since 

(| | / ) 3y  −  is still valid for each speech sample x, it 

can be indifferent from the spoken phrase. 

3.2.6. Speech signal normalization 

Using Eq. 7, normalization makes voice signals equivalent 

regardless of magnitude variances. 

i
Mi

s s
s



−
=

                            (7)

 

Let si be the ith component of signal s, σ and s indicate its 

mean and standard deviation, respectively, and sMi denotes the 

ith element of the movement s that has been normalized. 

3.2.7. Spectrogram 

Using the short-term Fourier transform, speech samples are 

transformed into spectrograms to extract discriminative 

properties automatically. In two dimensions, an energy 

amplitude is shown visually in a spectrogram. The x and y 

axes indicate the time and frequency domains. The color of 

each point in the visualization, shown in Figure 2, denotes the 

energy amplitude at a particular instant. A spoken signal is 

initially separated into frames before being analyzed. Each 

frame is given a Hamming window, which produces a 

spectrogram. The fast Fourier transform (FFT) is then used to 

transform these windowed frames from the time domain to the 

frequency domain. In the frequency-domain representation, 

band-pass filters are used. The Mel-scale is used to distribute 

these filters, and the center frequency of each filter has been 

adjusted accordingly. Each band-pass filter's output is given a 

logarithmic function to decrease the dynamic range. The voice 

signal spectrogram is created by merging the results of these 

operations frame by frame. 

 

Figure 2: Speech Signal Framing and Windowing 

3.3. Convolutional wavelet packet transforms 

The CWPT, a powerful signal processing tool, combines the 

principles of convolution and wavelet packet transforms to 

analyze and represent data in both the temporal and frequency 

domains. Data compression, image analysis, and signal 

processing applications benefit most from this disruptive 

approach. The Continuous Wavelet Packet Transform (CWPT) 

employs a well-built array of convolutional filters to separate 

unique properties or motifs within a signal. The CWPT excels 

in detecting even the smallest variations and subtleties in the 

signal via these filters, allowing for specialized analysis. The 

CWPT develops a hierarchical arrangement of sub-bands 

having a tree-like structure by merging the convolution 

outputs with appropriate weightings that include varied scales 

and orientations. Unlike standard wavelet transformations, the 

CWPT, like traditional wavelet packet transformations, allows 

for signal investigation at many resolutions. However, its 

distinguishing feature is the use of convolutional filters, which 

augment the captured spatial information. This enhancement is 

especially useful for jobs requiring a more detailed spatial 

comprehension, such as image processing. In this way, the 

CWPT provides a more comprehensive representation of the 

signal, outperforming standard wavelet transformations. 

Notably, the CWPT distinguishes itself by its ability to capture 

signals with localized and anisotropic properties, which is a 

hurdle for many other transformation approaches. This 

adaptability extends across multiple data kinds, from pictures 

and audio signals to time-series data, making the CWPT a 

versatile instrument suitable for a wide range of applications. 

In conclusion, the CWPT cleverly combines convolution and 

wavelet packet transforms to create a robust and versatile 

approach to signal processing.It is a crucial tool in 

contemporary signal processing and data analysis because of 

its ability to capture fine details and applicability across 

numerous domains. 

3.3.1. Sub-band based wavelet parameters 

The inner product of the signal y (t) and mother wavelet ( )t
is computed to produce the wavelet transform. 

, ( )c d

t d
t

c
 

− 
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       

     (8)
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1
( , ) ( ) *

t d
W y c d y t dt

cc
 

+

−

− 
=  

 


   

     (9)

 

The variables c and d stand in for the scale and shift 

parameters, respectively. Users can either shift or expand the 

mother wavelet by changing these variables. 

The wavelet, or the discrete wavelet transform (DWT), divides 

the signal into discrete domains to perform dyadic multi-

resolution analysis (MRA). The discrete wavelet family's scale 

and translation parameters are identified in the DWT 

architecture by the integer’s j and k, respectively. The family's 

collection of discretized parameter functions receives 

modifications. 

0

jc c=
                                     (10)

 

0 0

jd kd c=
                                                  (11)

/2

, 0 0( ) ( _ )j j

i k k c c t kd − −=
   (12)   

    
 

, ( )j k t is referred to as the DWT base in the equation. The 

transform's time variable is still continuous despite the name. 

The DWT coefficients of a continuous time function are 

similarly defined as 

, , 0 0/2

0

1
( ) ( ) ( ) ( )j

j k v j k vj
e f t t f t a t kb dt

c
  −= −

(13) 

    

 

Once the transformation is finished, it becomes clear how a 

function's ( )vf t  wavelet representation is expressed.  

Discrete Wavelet Transform (DWT) signals alter data using 

high-pass and low-pass filters. After passing through a high-

pass filter, the high-frequency components of vocal signals are 

kept as "details." Like the high-frequency components, the 

low-frequency components, which are kept as 

"approximations," can only be gradually dissected by repeated 

processes. 

, ,( ) ( ) ( ) ( )v v j k j k

j k

f t f t t t =
 (14) 

 

Their most important feature is the low-frequency content of 

voice transmissions, which allows for signal identification. 

Frequency content can provide depth offlavour. The voice will 

change if the high-frequency speech signal components are 

removed, but speech can still be understood. The wavelet 

packet transform (WPT) uses an iterative binary tree approach 

to dissect the audio stream. The sole difference between the 

WPT and DWT is that the WPT decomposes approximations 

and details rather than just approximations. The core idea 

behind wavelet packets (WP) is that they use a pair of dual 

filters with low-pass and high-pass characteristics when given 

a signal. These filters separate the initial signal's sub-band 

frequency components into two sequences. The two 

orthogonal wavelet bases from the previous node has the 

subsequent names. 

2

1( ) [ ] ( 2 )p p j

j j

n

t h n k n 


+

=−

−
                                  (15)

 

2

1( ) [ ] ( 2 )p p j

j j

n

t g n k n 


+

=−

−
                                   (16)

 

The wavelet function is denoted by v[n] in Eqs. (15 and 16). 

The number of decomposition levels and prior node nodes are 

represented by the symbols j and p, respectively. The Wavelet 

Packet Transform (WPT) and the Discrete Wavelet Transform 

(DWT) are used in this study's feature extraction process. 

However, due to the data's extreme length, classifiers cannot 

effectively use it. We must therefore look for a more accurate 

way to capture the speech features. 

3.3.2. Energy index of the sub-band signals 

It is common practice to estimate voice energy to enhance the 

depiction of sub-band signals. According to an earlier study, 

an energy index can be a helpful element in recognition tasks. 

Previous research has shown the value of using the energy 

index of a particular sub-band signal as a characteristic to 

recognize digital modulation in a biological setting. This 

investigation will partition the signal's energy into several 

resolutions, followed by an assessment of these indices. 

Mathematically 

2

2

,

|| ||1
| |

j

j j k

k j

v
P v

N N
= =

    

    (17)

 

Where || ||jv denotes the norm of the expansion coefficient
jv

.3.4. Generative Adversarial Network (GAN) 

While the basic GAN and convolutional GAN both strive to 

produce high-quality output samples, the discriminator's 

primary responsibility is to assess whether the inputs are valid. 

GANs are an obvious candidate for classification jobs due to 

their high content generation performance. When there is a 

lack of training data, the model's generalizability can be 

improved by using samples generated by the ( )gp y that 

closely approximate the real data distribution. This study tests 

the CGAN's classification abilities by giving it access to more 

unlabelled examples. Figure 3 presents the suggested GAN 

framework. 
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Figure 3: Framework of GAN 

The "real/fake" output of a GAN discriminator is produced. A 

vector 
1{ ,... }Nl l l= with N dimensions created by the 

standard classifier section, and lk represents the probability 

mod ( | )elp x k y= that the input y belongs to class k. The 

GAN enables the classifier to accept samples from the 

generator as input and produce N+1 units as output, with lN+1 

reflecting the probability 
mod ( 1| )elp x N y= = that the 

inputs are authentic, this integrates the discriminator and 

classifier. As a result, the loss function is divided into two 

parts: an adversarial loss 
advL and a classification loss

classL
.
 

( , )

1

( ) log
data

N

class yx p y x k k

k

Dis x l
=

= − L E

         (18)

 

( ) mod

( ) mod

( , ) [log ( 1| )]

[log[1 ( 1| )]]

g

g

class y p y el

y p y el

Gen Dis p x k y

p x k y

= − = +

− − = +

L E

E
 

    (19)

 

classL Incorporates all labeled data and indicates the cross-

entropy loss using the label vector y from a training sample. 

The labels of the genuine original samples that served as their 

foundation are passed down to the freshly created samples. 

advL stands for the adversarial loss when attempting to grasp 

the target distribution. The strategy uses the least square GAN 

(LSGAN) technique to improve training stability and handle 

the problem of gradient vanishing [21]. The adversarial loss 

advL  is then broken down into separate generator and 

discriminator components. 

2 2

( ) ( )( ) [( ( ) 1) ] [( ( ( )) ]
data dataadv y p y y p yDis D y D G y= −L E E

    (20)
 

2

( )( ) [ ( ( )) 1) ]
dataadv y p yGen D G y= −L E

                 (21) 
 

The conventional GAN can provide outputs of varying quality. 

The learned data distribution when more than one mapping 

complies with the GAN framework and the adversarial loss is 

insufficient to preserve context gained from genuine inputs, 

errors may occur. The Huber loss is used to guarantee an 

accurate depiction of the actual data. The Huber loss functions 

as a strong regression loss function that can tolerate outliers in 

the data better than the squared error loss. The Huber loss can 

be defined as follows, given an input of dimensions H*W and 

its corresponding generated output G(y) of the same size: 

1 1

1
( ) ( , )

.

H W

Huber

i j

Gen i j
H W


= =

= L

  (22)  

   

 

21
[ ( ) ] , ( ) 1

( , ) 2

| ( ) |,

ij ij ij ij

ij ij

y G y x G y
i j

y G y otherwise




− − 

= 
 −  (23) 

    

 

Where the residual is known as ( )ij ijy G y−  and the residual 

threshold is modifiable. 

The following is a list of the overarching goals that the 

generator and discriminator must minimize: 

( ) ( ) ( )adv HuberGen Gen Gen= +L L L
  (24)  

    
 

1 2( ) ( ) ( )adv classDis Dis Dis = +L L L
   (25) 

 

Where λ1 and λ2 are trade-off variables that support 

categorization and unlabeled learning, respectively. 

3.4.1. Network architecture  

GAN employs a variety of generator and discriminator 

designs. The generator is always built in an encoder-decoder 

configuration, as illustrated in Fig. 4. The generator should be 

able to encode both temporal and spatial data and provide 

excellent feature sequences upon decoding. The discriminator 

must handle enormous amounts of training data to 

approximate speaker sequencing. The acquisition of the 
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feature sequences corresponding to the speaker's voice 

follows. The generator creates synthetic samples with lengths 

that match these real sequences. Convolutional and shuffler 

layers are used in a series of iterative stages that involve 

downsampling and upsampling to achieve this. The 

discriminator then distinguishes between real and synthetic 

samples, classifying them into separate groups, using the 

created samples and actual acoustic properties from the 

dataset. 

3.4.1.1. Generator design 

The generator's objectives are the reproduction of speaker 

feature sequences and the identification of correlations from 

inputs. Some GANs use generators made up of interconnected 

layers or essential convolutional layers for specific speech-

related tasks, including voice conversion and language 

detection. The samples produced by these generators are 

unreliable because they only capture relationships between 

feature dimensions. Although it takes time because of how 

sophisticated parallel computation is, the RNN is an excellent 

method for solving this issue. Considering these elements, we 

build the generator utilizing gated CNNs [22], allowing for the 

insertion of sequentialstructure and promoting rapid 

convergence. 

 

Figure 4: The architecture of the gated CNN block 

The gated CNN block, which introduces a change from the 

traditional rectified linear unit (ReLU), is shown in Figure 4. 

Convolutional operations and the gated linear unit (GLU) are 

combined in this block. The GLU functions as both activation 

and a computational component to create the hidden layer's 

output, denoted by the symbol hl(x). 

( ) ( * ) ( * )lh y y U b y W c= +  +
      (26)

 

The yx values represent the hidden layer's (hl) input. U, b, W, 

and c are designated as parameter elements for convolutional 

layers within linear projection layers. The symbol represents 

the sigmoid function and denotes element-wise matrix 

multiplication. The information going through the hierarchy 

can be regulated using this gating mechanism dependent on 

the states of the preceding layers. 

The feature map dimension is increased by using pixel shuffler 

up sampling layers after extracting patterns from the inputs. 

Pixel shufflers are used in computer vision processing to 

recreate high-resolution images. 

 

 

 

3.4.1.2. Discriminator design 

The Discriminator Network's job is to determine the input 

image's legitimacy to increase the denoised outcome's 

aesthetic appeal. The goal is to retain the value for created 

samples near zero while assigning a probability value for 

actual picture data as close to one as practical. The 

Discriminator Network's smooth operation is made possible by 

this interaction. 

The following three components are located between input and 

output: 

1. Convolutional layer and leaky ReLU activation function 

integration 

2. In seven blocks, A batch normalization (BN) layer, a 

recurrent convolutional (Conv) layer, and a leaky ReLU layer 

were all present. Each block's kernel size rose gradually from 

64 to 512 while the strides alternated between 2 and 1 

cyclically. 

IV. RESULT AND DISCUSSION 

This section evaluates the suggested near real-time speaker 

recognition system's perceived efficacy. All the experiments 

are performed on a Windows operating system with an i7 

processor, Nvidia GT 640, 32 GB RAM clocked at 3.4 GHz 

using Matlab software. We used the MSR Identity toolbox to 

implement the speaker recognition system. To validate the 

improvement in the system's performance with our proposed 

approach, we conducted experiments for speaker verification 

and identification. The research makes use of many well-

known techniques, including Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Recurrent Neural 

Networks (RNN), and Convolutional Neural Networks (CNN). 

 

4.1. Classification Evaluation 

There are several differences between the performance metrics 

employed by classification systems. The domain of the 

categorization system must be appropriate for the critical study 

performance metrics. Using test data, a classification task's 

performance can be evaluated using a confusion matrix (Tab. 

2). Predicting both positive and negative events is a 

component of its application. The terms "true positive" and 

"true negative" refer to instances when both the actual and 

projected classifications are incorrect (i.e., negative), 

respectively. TP refers to situations where both the primary 

and forecasted classifications are accurate. False negatives, or 

FNs, occur when the anticipated class is negative, but the 

actual class is positive 

.  

Table 2: Confusion matrix 

 Actual Instance 

 Yes No 

Predicted Instances 

Yes TP FN 

No FP TN 

 

False positives occur when the expected class is positive, but 

the actual class is negative. Reduce FP and FN to achieve the 
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optimal ASR system performance. A variety of performance 

measures were utilized to evaluate the classifier's performance. 

The key steps used in automatic speaker identification are 

precision, recall, accuracy, false acceptance rate (FAR), false 

rejection rate (FRR), equal error rate (EER), and execution 

time. A summary of these performance benchmarks is 

provided in the section that follows. 

4.1.1 Precision Analysis 

It measures the proportion of predicted unfavourable events. In 

most cases, exactness is calculated using the precision 

measure. The precision values increase as the FP rate 

decreases. 

Pr
TP

esision
FP TP

=
+     (27)

 

 

 

Table 3: Precision Analysis for GAN-CWPT method with 

existing systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 85.039 91.324 89.034 87.234 94.983 

400 86.324 91.928 89.617 87.928 95.425 

600 85.653 92.617 90.123 88.192 95.827 

800 86.435 92.928 90.425 88.562 96.039 

1000 87.094 93.627 90.928 88.928 96.824 

 

In Fig. 5 and Tab. 3, the precision of the GAN-CWPT 

methodology is compared to that of other frequently used 

methods. The graph demonstrates how the deep learning 

strategy outperforms the different alternatives regarding 

precision. For instance, the precision values for the ANN, 

SVM, RNN, and CNN models are 85.039%, 91.324%, 

89.034%, and 87.234%, respectively, while the precision value 

for the GAN-CWPT model is 94.983% for 200 data. The 

suggested GAN-CWPT model has a precision value of 

96.824% under 1000 data, which is higher than the ANN, 

SVM, RNN, and CNN models, with precision values of 

87.094%, 93.627%, 90.928%, and 88.928%, respectively. 

 
Figure 5: Precision Analysis for GAN-CWPT method with 

existing systems 

 

4.1.2 Recall Analysis 

The proportion of true positives (TPs) or accurately predicted 

positive outcomes to all positives is called recall. The true 

positive rate (TPR) is another term for recall. 

Re
TP

call
FN TP

=
+     (28)

 

 

 

Table 4: Recall Analysis for GAN-CWPT method with 

existing systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 81.982 85.093 83.727 79.617 87.928 

400 81.092 85.213 83.028 80.182 87.425 

600 82.324 85.637 83.938 80.617 87.637 

800 82.738 86.637 84.223 80.917 88.927 

1000 82.083 86.435 84.627 81.425 89.435 

 

In Fig. 6 and Tab. 4, the recall of the GAN-CWPT strategy is 

compared to that of other commonly utilized methods. The 

graph depicts how the deep learning technique outperforms the 

different strategies in terms of recall. For instance, the recall 

value of the GAN-CWPT model for 200 data is 87.928%, 

whereas for the ANN, SVM, RNN, and CNN models it is 

81.982%, 85.093%, 83.727%, and 79.617%, respectively. 

With recall values of 82.083%, 86.435%, 84.627%, and 

81.425%, for the ANN, SVM, RNN, and CNN models 

respectively, under 1000 data, the proposed GAN-CWPT 

model has recall value of 89.435%. 

 
Figure 6: Recall Analysis for GAN-CWPT method with 

existing systems 
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4.1.3 Accuracy Analysis 

The performance parameter known as accuracy measures how 

many examples a given classification system properly 

identified. It calculates the proportion of accurately anticipated 

occurrences to total instances. Eq. (29), which displays the 

mathematical expression for accuracy. 

( )

( )

TP TN
Accuracy

TN TP FN FP

+
=

+ + +
  (29)

 

 

Table 5: Accuracy Analysis for GAN-CWPT method with 

existing systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 86.535 91.028 89.415 83.927 95.647 

400 87.917 92.516 90.615 84.425 96.324 

600 86.213 93.715 89.914 85.572 95.725 

800 87.415 92.916 90.314 84.927 97.726 

1000 88.118 94.553 91.018 85.332 98.627 

 

In Fig. 7 and Tab. 5, the accuracy of the GAN-CWPT 

methodology is compared to that of other commonly used 

methodologies. The graph depicts how the deep learning 

method has an enhanced accuracy performance. For instance, 

the GAN-CWPT model has an accuracy of 95.647% for 200 

data, compared to the accuracy values of 86.535%, 91.028%, 

89.415%, and 83.927% for the ANN, SVM, RNN, and CNN 

models, respectively. In terms of accuracy under 1000 data, 

the suggested GAN-CWPT model outperforms with 98.627% 

of accuracy while the ANN, SVM, RNN, and CNN models 

have an accuracies of 88.118%, 94.553%, 91.018%, and 

85.332%, respectively. 

 
Figure 7: Accuracy Analysis for GAN-CWPT method with 

existing systems 

 

 

 

4.1.4 EER Analysis 

The mean of the false acceptance rate (FAR) and false 

rejection rate (FRR) is calculated using the Equal Error Rate 

(EER). A decrease in the EER value translates into a loss in 

system precision. Eqs 30 and 31 provide the equations for 

calculating FAR and FRR, respectively, while Eq 32 

determines the EER. 

FP
FAR

FP TN
=

+     (30)

 

FN
FRR

FN TP
=

+     (31)

 

2

FAR FPR
EER

+
=

    (32)

 

Table 6: EER Analysis for GAN-CWPT method with existing 

systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 22.516 20.415 18.324 17.134 15.424 

400 22.817 20.928 18.927 17.322 15.827 

600 22.019 20.516 19.028 17.625 16.029 

800 23.656 21.412 19.425 18.028 16.324 

1000 23.926 21.762 19.726 18.324 16.871 

 

 
Figure 8: EER Analysis for GAN-CWPT method with existing 

systems 
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Figure 8 and Tab. 6 display an EER comparison of the GAN-

CWPT technique with various well-known techniques. The 

graph shows how the deep learning increases the output while 

decreasing EER. The ANN, SVM, RNN, and CNN models 

have EER values of 22.516%, 20.415%, 18.324%, and 

17.134%, respectively, while the GAN-CWPT model's EER 

value for 200 data is 15.424%. The GAN-CWPT model, 

however, has demonstrated to function optimally over various 

data sizes with low EER values. Like this, for 1000 data, the 

EER value for the GAN-CWPT is 16.871%, compared to the 

values for the ANN, SVM, RNN, and CNN models, which are 

23.926%, 21.762%, 19.726%, and 18.324%, respectively. 

 

4.1.5 FRR Analysis 

Table 7: FPR Analysis for GAN-CWPT method with existing 

systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 28.425 26.314 25.082 23.425 21.029 

400 28.526 26.651 25.872 23.927 22.092 

600 29.627 27.425 25.324 24.324 21.827 

800 29.926 27.827 26.213 24.026 22.313 

1000 29.213 28.029 26.029 24.725 23.029 

 

 
Figure 9: FPR Analysis for GAN-CWPT method with existing 

systems 

Figure 9 and Tab. 7 display a FRR comparison of the GAN-

CWPT strategy with various well-known techniques. The 

graph shows how the productivity increases while FRR 

decreases with deep learning. For example, the FRR value of 

GAN-CWPT model is 21.029%, for 200 data while it is 

28.425%, 26.314%, 25.082%, and 23.425%, for ANN, SVM, 

RNN, and CNN models respectively. But the GAN-CWPT 

model has proven to perform most effectively with low FRR 

values across various data sizes. In a similar vein, with 1000 

data, the FRR value for the GAN-CWPT is 23.029%, while it 

is 29.213%, 28.029%, 26.029%, and 24.725% for the ANN, 

SVM, RNN, and CNN models, respectively. 

 

4.1.6 Receiver operating characteristics  

The false acceptance rate (FAR) and false rejection rate (FRR) 

are displayed as functions of various values on the Receiver 

Operating Characteristic (ROC) curve. The classification 

algorithm's performance compared to the discriminating 

threshold is depicted graphically. FAR and FRR are affected 

by the training database's size and the decision threshold used 

to calculate the score. Examining the ROC curve as a function 

of the decision threshold, the erroneous rejection rate may be 

compared to the equivalent false acceptance rate. Changing the 

decision threshold can also affect the classifier's output. 

 
Figure 10: ROC curve analysis for GAN-CWPT method  

 

4.1.7 Execution Time Analysis 

The time it takes for a computer system or algorithm to 

analyze and process audio data to detect and classify the 

speakers in the input audio is called execution time. This time 

measurement is critical for evaluating the speaker recognition 

and classification system's efficiency and real-time 

capabilities. 

 

Table 8: Execution Time Analysis for GAN-CWPT method 

with existing systems 

Number 

of data 

from 

dataset 

ANN SVM RNN CNN GAN-

CWPT 

200 0.132 0.173 0.182 0.159 0.109 

400 0.138 0.179 0.192 0.152 0.115 
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600 0.140 0175 0.198 0.156 0.121 

800 0.146 0.189 0.194 0.163 0.119 

1000 0.142 0.185 0.197 0.168 0.125 

 

 
Figure 11: Execution Time Analysis for GAN-CWPT method 

with existing systems 

 

In Tab.8 and Fig.11, the computational time of the proposed 

GAN-CWPT methodology is compared to that of existing 

techniques. The data clearly shows that the GAN-CWPT 

technique has outperformed all other strategies. The suggested 

GAN-CWPT approach, for example, took only 0.109ms to 

compute 200 data, whereas other current methods such as 

ANN, SVM, RNN, and CNN have taken 0.132ms, 0.173ms, 

0.182ms, and 0.159ms, respectively. Similarly, the suggested 

GAN-CWPT approach takes 0.125ms to compute 1000 data, 

while existing techniques like ANN, SVM, RNN, and CNN 

have taken 0.142ms, 0.185ms, 0.197ms, and 0.168ms, 

respectively as their execution time. 

 

4.1.8 Training and Testing Accuracy Analysis 

 

Fig. 12 shows the training accuracy and testing accuracy of the 

GAN-CWPT system on 80:20 of the TR dataset/TS dataset. 

The evaluation of the GAN-CWPT approach on the TR dataset 

defines the training accuracy. In contrast, the testing accuracy 

is computed by assessing the performance on a separate testing 

dataset. The results show that training and testing accuracy 

increase with increase in epochs that increases the 

performance of the GAN-CWPT method on the TR and TS 

datasets. 

 
Figure 12: Training and Testing Accuracy Analysis for GAN-

CWPT method 

4.1.9 Training and Testing loss Analysis 

Fig. 13 shows the training loss and testing loss outcome of the 

GAN-CWPT system on 80:20 of the TR dataset/TS dataset. 

The training loss defines the error between the predictive 

performance and original values on the TR data. The testing 

loss measures the performance of the GAN-CWPT approach 

on individual validation data. The findings show that the 

training loss and testing loss tend to decrease with increase in 

epochs. It depicted the superior performance of the GAN-

CWPT method and its ability to generate precise classification. 

The reduced value of training loss and testing loss illustrates 

the superior performance of the GAN-CWPT technique in 

capturing patterns and relationships. 

 

 
Figure 13: Training and Testing loss Analysis for GAN-

CWPT method 

V. CONCLUSION 

In this study, the components that make up an autonomous 

speaker recognition system are identified and described in 

depth. Speech databases, including recordings made in various 

languages using recording techniques in both quiet and noisy 

environments, are crucial for training these systems. Creating 

a dependable and efficient Speaker Identification (SI) system 

is then made possible by preprocessing the speech signals to 

prepare them for feature extraction. The enhanced audio 

features can handle pitch, tone, and pronunciation fluctuations 

that are common in speaker recognition tasks and more 

accurately describe speech characteristics. Our proposed 

approach GAN-CWPT enhances the training data and 

increases the diversity of the dataset by employing GANs to 

generate synthetic speech samples. The generator and 

discriminator parts of the GAN architecture have been 

modified to create realistic voice samples with characteristics 

that are quite comparable to actual speaker utterances. The 

additional dataset improves the Speaker Recognition and 

Classification system's generalization and robustness, even in 

settings with little training data. We run extensive experiments 

on popular speaker identification datasets to assess how well 

our technique functions. The outcomes show that the 

suggested WMDCNN-RIO approach beats state-of-the-art 
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methods in terms of accuracy and effectiveness. The presented 

model had a total accuracy of 98.627%, making it the most 

accurate. Future research on speaker emotion recognition will 

center on using brief spoken instructions in voice interactive 

systems. We aim to improve command prioritizing in multi-

user environments by utilizing this information. This will 

assist these systems in understanding the command and how 

an order is said. An order given in a stern or obnoxious tone 

will be given higher priority than one. The user's experience 

can be significantly improved by a voice interaction system 

that can recognize emotion. 
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