
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3556

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Comparison of the Execution Step Strategies on

Scheduling Data-intensive Workflows on IaaS Cloud

Platforms

Jean Edgard Gnimassoun
Laboratoire de Recherche en Informatique et Télécommunication

Université de San Pedro

San Pedro, Côte d’Ivoire
gnimjean@gmail.com

Armand Kodjo Atiampo
Laboratoire de Recherche en Informatique et Télécommunication

Université Virtuelle de Côte d'Ivoire

Abidjan, Côte d'Ivoire
arkodati@gmail.com

Karim Sidibé
Laboratory of Computer and Applied Sciences

Université Alassane Ouattara

Bouaké, Côte d'Ivoire

sidibekamy@gmail.com

Tchimou N'Takpé
Laboratoire de Recherche en Informatique et Télécommunication

Université Nangui Abrogoua

Abidjan, Côte d'Ivoire

tchimou.ntakpe@gmail.com

 Abstract—The IaaS platforms of the Cloud hold promise for executing parallel applications, particularly data-intensive scientific

workflows. An important challenge for users of these platforms executing scientific workflows is to strike the right trade-off between the

execution time of the scientific workflow and the cost of using the platform. In a previous article, we proposed an efficient approach that assists
the user in finding this compromise. This approach requires an algorithm aimed at minimizing the execution time of the workflow once the

platform configuration is set. In this article, we compare two different strategies for executing a workflow after its offline scheduling using an

algorithm. The algorithm that we proposed in the previous study has outperform the HEFT algorithm.

The first strategy allows some ready tasks to execute earlier than other higher-priority tasks that are ready later due to data transfer times.
This strategy is justified by the fact that although our scheduling algorithm attempts to minimize data transfers between tasks running on

different virtual machines, this algorithm does not include data transfer times in the planned execution dates for the various tasks of the

workflow. The second strategy strictly adheres to the predetermined order among tasks scheduled on the same virtual machine.

The results of our evaluations show that the best execution strategy depends on the characteristics of the workflow. For each evaluated
workflow, our results demonstrate that our scheduling algorithm combined with the best execution strategy surpasses HEFT. The choice of the

best strategy must be determined experimentally following realistic simulations, such as the ones we conduct here using the WRENCH

framework, before conducting simulations to find the best compromise between cost and execution time of a workflow on an IaaS platform..

Keywords-workflow scheduling, makespan reduction, data-intensive workflows, IaaS cloud

I. INTRODUCTION

Data-intensive parallel applications come from various

fields and are modelled by Directed Acyclic Graphs (DAGs)

[1]. The execution of these data-intensive parallel applications,

including thousands of tasks on large-scale distributed

infrastructures, is typically managed by a Workflow

Management System (WMS) [2]–[4]. Cloud IaaS platforms

hold promise for the execution of such applications, given the

substantial number of parallelizable computing cores and the

availability of storage resources.

The description of a scientific workflow is typically

independent of the specific characteristics of the infrastructure

on which it will be executed. This offers the advantage of

providing users with great flexibility, allowing them to execute

the same workflow on different infrastructures without having

to modify their application.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3557

IJRITCC | September 2023, Available @ http://www.ijritcc.org

A direct consequence of this flexibility is that task

dependencies (where one task produces data subsequently

consumed by another task) are generally managed using files.

Intermediate data produced is written to a storage medium, and

then the file can be transferred over the network to another

storage device where the consuming task can eventually read it.

In [5] we discussed the scheduling and execution of data-
intensive parallel applications on Infrastructure as a Service
(IaaS) clouds. Although workflow management systems can
accommodate a customized execution infrastructure for these
applications, shared storage space can become a bottleneck. To
solve this problem, a data-aware scheduling algorithm has been
proposed that exploits the dedicated storage space (fast SSD
disks) at each virtual machine to improve data localization. This
reduces data transfers over the network during workflow
execution. The main aim of the algorithm is to help IaaS cloud
users find a good compromise between their workflow execution
time and the cost of using IaaS cloud resources, by selecting sets
of VM instances on the Pareto front. But long before that, we
showed that to minimize execution time for a fixed number of
cores, priority should be given to large VM instances (96 cores).
This study showed that after the scheduling phase (offline), there
could be several scenarios during the execution phase (online).
The idea that we are going to develop in this study concerns the
comparison of two different strategies for the execution step of
a workflow after its scheduling on an IaaS platform.

This document is structured as follows. In section 2, we
review the related work on scheduling scientific workflows on
cloud IaaS. In section 3, we provide a description of the platform
and application models used in this study. Then, in section 4, we
recall the online algorithm of [5] and detail the proposed new
execution strategy that respects the scheduling order, while the
performances of the two execution strategies are evaluated in
section 5. Finally, we conclude this article in section 6.

II. RELATED WORKS

While some studies on scientific workflow scheduling

algorithms aim to minimize dynamic energy consumption [6],

[7], scheduling algorithms for scientific workflows targeting

IaaS clouds generally strive to find the best compromise

between workflow execution time and the number (type) of

virtual machine instances used for execution. Following the

pay-as-you-go model of IaaS clouds, this resource quantity

often corresponds to a certain cost. A typical approach involves

fixing one objective as a constraint, such as a deadline [8]–[11]

or a budget [12], [13] and optimizing the other objective. Some

papers directly solve this bi-objective optimization problem by

selecting a solution from those comprising the Pareto front

[14]–[16]. These heuristics usually involve variations of

scheduling and aim to find a single solution with favorable

properties.

The Deadline Constrained Critical Path (DCCP) [8] is a list-

based scheduling algorithm used in cloud computing. Its

primary objective is to fulfill the user-defined workflow

deadline while minimizing the overall execution cost. Both

algorithms within DCCP share a common preprocessing step.

During this initial phase, tasks are organized into different

levels, each level being assigned a sub-deadline. The user-

defined deadline is distributed non-uniformly among these

levels, ensuring that levels with longer task execution times

receive correspondingly longer sub-deadlines. However, DCCP

employs a distinct approach in the task prioritization step. To

enhance the efficiency of communication within the entire

workflow, DCCP introduces the concept of the Constrained

Critical Path (CCP). This involves assigning all tasks on a

specific path to a single resource. DCCP identifies all CCPs

within a workflow using a modified ranking method and

compiles a list of these CCPs. During each step of the

scheduling process, only the tasks within a CCP that are ready

for execution are allocated to the appropriate resource, while the

remaining tasks are held for subsequent steps.

The authors of [9] introduced a dynamic group learning

distributed particle swarm optimization (DGLDPSO) method

designed for large-scale optimization tasks. Furthermore, it

extends the application of DGLDPSO to the domain of large-

scale cloud workflow scheduling. DGLDPSO is particularly

well-suited for addressing large-scale optimization challenges,

owing to two key advantages. Firstly, it segments the entire

population into numerous groups, employing a master-slave

multigroup distributed model that facilitates the coevolution of

these groups. This results in the formation of a distributed

Particle Swarm Optimization (DPSO) system, enhancing

algorithmic diversity. Secondly, DGLDPSO incorporates a

dynamic group learning (DGL) strategy within DPSO, striking

a balance between diversity and convergence. When

DGLDPSO is employed in the context of large-scale cloud

workflow scheduling, an adaptive renumbering strategy (ARS)

is developed to tailor solutions to the unique characteristics of

the available resources. This strategy ensures that the search

process is purposeful and meaningful, rather than arbitrary. The

article conducts experiments on both large-scale benchmark

function sets and large-scale cloud workflow scheduling

instances to evaluate the performance of DGLDPSO.

Comparative analysis of the results demonstrates that

DGLDPSO outperforms or, at the very least, matches the

performance of other state-of-the-art large-scale optimization

algorithms and workflow scheduling algorithms.
In their study, Wu et al. [10] introduced two deadline-

constrained algorithms, namely Probabilistic Listing (ProLis)
and L-ACO, with the objective of minimizing the makespan in
cloud-based workflow scheduling. The ProLis algorithm plays a
crucial role in this context by distributing deadlines to individual
tasks, ranking these tasks, and subsequently allocating the
necessary resources in a sequential manner to meet the Quality
of Service (QoS) requirements for each task's execution.
Additionally, L-ACO leverages Ant Colony Optimization
(ACO) to construct various task-order lists. These lists are
instrumental in identifying effective scheduling solutions that
adhere to the deadline constraint while minimizing the makespan
and associated costs. However, it's important to note that the
study conducted by Wu et al. did not delve into addressing
performance variations or consider the start-up/boot time of
virtual machines (VMs) in their analysis.

In [11], the authors investigate a novel workflow scheduling
model designed for heterogeneous Infrastructure-as-a-Service
(IaaS) platforms. This model allows multiple tasks to execute
concurrently on a virtual machine (VM) based on their varying
demands for multiple resources. The authors introduce a list-
scheduling framework as the foundation for this new multi-
programmed cloud resource model. Within this framework,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3558

IJRITCC | September 2023, Available @ http://www.ijritcc.org

tasks are assigned placements in a prioritized sequence,
considering both existing and new VMs available on the
platform. Different task prioritization methods and placement
comparison techniques can be employed to achieve various
scheduling objectives. Additionally, to leverage the diversity of
IaaS platforms, VMs can be dynamically scaled up during the
scheduling process. Subsequently, the authors present a
deadline-constrained workflow scheduling algorithm named
DyDL, built upon this framework. DyDL is designed to optimize
the cost associated with workflow execution while adhering to
specified deadlines. This algorithm prioritizes tasks based on
their latest start times and assigns them placements that not only
meet their latest start time requirements but also incur minimal
cost increases.

Experimental results demonstrate that DyDL consistently
outperforms several existing deadline-constrained workflow
scheduling algorithms in the majority of test cases, highlighting
its effectiveness in achieving superior schedules.

In the context of a hybrid cloud model [12], organizations
have the flexibility to safeguard their sensitive information and
critical applications within the confines of a private cloud
environment while simultaneously offloading other data and
applications to a public cloud when necessary. This hybrid
approach offers a balance between security and scalability. To
ensure the preservation of data privacy in workflow applications,
the authors of this study introduce a budget-constrained hybrid
cloud scheduler (BCHCS). BCHCS operates as a static heuristic
scheduling algorithm, capable of making informed decisions
regarding the allocation of sensitive tasks to the private cloud
and utilizing the resources of the public cloud for non-sensitive
tasks. The primary objective is to minimize the makespan (the
total duration of the workflow) while adhering to the budget
constraints imposed by the user. Notably, experimental results
reveal the efficacy of this proposed method. It successfully
guarantees the execution of sensitive tasks within the private
cloud, while also achieving a minimum of 7 percent reduction in
makespan and a higher success rate in comparison to similar
existing techniques. This underscores the BCHCS's ability to
strike a balance between data privacy and cost-efficiency,
making it a valuable tool for organizations navigating the
complexities of hybrid cloud environments.

In their research, Rizvi et al. [13] introduced a workflow
scheduling policy called the "fair budget scheduling algorithm."
The primary objective of this algorithm is to reduce both the
computational cost and the execution time of workflows. To
assess its effectiveness, the authors implemented various
scientific workflows and conducted a comparative analysis of
the outcomes against their proposed technique. To substantiate
the efficacy of their approach, the obtained results underwent
verification through the analysis of variance (ANOVA) test. The
ANOVA test is a statistical method used to assess the
significance of differences between multiple groups or
treatments. In this context, it likely helped confirm whether the
fair budget scheduling algorithm indeed produced statistically
significant improvements in computational cost and execution
time compared to alternative methods.

The paper [15] addresses the challenge of cloud workflow
scheduling by formulating it as a multi-objective optimization
problem that aims to optimize both execution time and execution
cost. To tackle this problem, the authors introduce a novel multi-
objective ant colony system based on a co-evolutionary multiple
population for multiple objectives framework. This framework

involves the use of two separate ant colonies, each dedicated to
handling one of the two optimization objectives, namely
execution time and execution cost. Furthermore, this approach
incorporates three innovative strategies to effectively address the
complexities posed by multi-objective optimization: i) a fresh
pheromone update rule is introduced, which is guided by a set of
nondominated solutions derived from a global archive. This
update mechanism helps each ant colony to adequately search
for its respective optimization objective; ii) a complementary
heuristic strategy is employed to ensure that a colony doesn't
exclusively focus on its individual optimization objective.
Instead, it cooperates with the pheromone update rule to balance
the exploration of both objectives, enhancing the overall search
and iii) an elite study strategy is introduced to enhance the
solution quality of the global archive. This strategy aims to bring
the archive closer to the global Pareto front, thereby improving
the quality of the overall solutions. The authors conducted
experimental simulations using five real-world scientific
workflows while considering the characteristics of the Amazon
EC2 cloud platform. The results of these experiments
demonstrate that the proposed algorithm outperforms both state-
of-the-art multi-objective optimization approaches and
constrained optimization approaches.

In their work, Zhou et al. [16] introduced the Fuzzy
Dominance Sort based Heterogeneous Earliest-Finish-Time
(FDHEFT) algorithm, designed to optimize the cost and
makespan of workflows executed on Infrastructure-as-a-Service
(IaaS) cloud platforms. This algorithm takes a fuzzy dominance
sorting approach to efficiently schedule tasks.

However, the authors noted a limitation in their approach.
They pointed out that these methods heavily rely on prior expert
knowledge and have a static global perspective. This means that
they are not well-suited to capturing the dynamic nature of
workflow scheduling. In dynamic environments, where
conditions and requirements change over time, relying solely on
static knowledge may not adequately address the evolving needs
of workflow execution. This limitation underscores the need for
more adaptive and flexible scheduling approaches that can
respond to real-time changes and dynamic workload conditions
in cloud environments.

III. PLATFORMS AND APPLICATIONS MODELS

In this paper, our platform model is built upon a standard

IaaS cloud configuration. We deploy multiple virtual machine

(VM) instances within a single datacenter on physical servers.

Specifically, we focus on a set of VMs similar to Amazon EC2

M5 instances [17], specifically M5d instances, which come

with local storage on NVMe SSD drives. In contrast, regular

M5 instances rely on the Amazon Elastic Block Storage (EBS)

service for data storage. You can find detailed characteristics of

the available M5d instances in Table I.

The instance series in question provides a range of virtual

cores (vCPUs) from 2 to 96, each with a consistent 4GiB of

memory per core. Amazon typically deploys these instances on

nodes equipped with Intel Xeon Platinum 8000 series

processors. The unique feature of M5d instances is the

attachment of fast block-level storage on SSD drives, directly

linked to the instance's lifespan. Our objective in this study is to

harness this rapid storage, shared by the vCPUs within an

instance but dedicated to them, for storing intermediate files

generated during workflow execution. This approach minimizes

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3559

IJRITCC | September 2023, Available @ http://www.ijritcc.org

network data transfers for tasks scheduled on the same virtual

machine, with only the workflow's entry and exit files stored on

an external storage node.

The network bandwidth available to other instances or the

EBS varies with the instance size. We assume that only the

largest instances, capable of utilizing an entire node (i.e., with

48, 64, or 96 vCPUs), guarantee network bandwidths of 10, 20,

and 25 Gbps, respectively. For smaller instances, ranging from

2 to 32 cores, the available bandwidth is proportionate to the

number of cores, set at 208.33 Mbps per core. All virtual

machine instances initiated for a given workflow are

interconnected through a single switch.

In line with the M5d instance description, our simulated

infrastructure takes into account the dedicated network link

from a VM to the EBS. Regarding network connections

between VMs, we assume that the bandwidth of the dedicated

connection between a VM and the EBS scales with the number

of cores for smaller VMs, up to 32 cores (equivalent to 218.75

Mbps per core).
While it has been shown in reference [18] that bandwidth

depends on factors like file sizes, the number of files, and
instance types, our simulations operate under the assumption of
reliable Quality of Service (QoS) and adherence to the
performance characteristics defined by the cloud provider for the
allocated resources.

The scientific workflows we aim to schedule are represented

as Directed Acyclic Graphs (DAGs), denoted as G = Ԍ={Ѵ,ℇ}.

In this representation, Ѵ = {𝑣𝑖 | 𝑖 = 1,…,V} represents a set of

vertices, which correspond to the computational tasks within the

workflow, and ℇ = { 𝑒𝑖,𝑗 | (𝑖, 𝑗) ϵ {1,…,V} x {1,…,V}}

represents a set of edges connecting these vertices. These edges

serve two primary purposes: they either signify a data

dependency, indicating a file transfer requirement, or they

represent a flow dependency between two tasks.

Our specific focus is on workflows that consist of a

significant number of sequential tasks, each of which runs on a

single core. This characteristic is typical of real scientific

applications [19]. Each task within the workflow has a

predefined or estimated duration, necessitates a set of input files

to initiate its execution, and generates a set of output files upon

completion. To describe these input and output files for a given

task 𝑣𝑖 , we use the notation 𝐼𝑛𝑝𝑢𝑡𝑖
𝑘 (for input files) and

𝑂𝑢𝑡𝑝𝑢𝑡𝑖
𝑘 (for output files), where "k" represents the file index.

When an output file produced by one task 𝑣𝑖 , is required as

input by another task 𝑣𝑗, this creates a data dependency between

𝑣𝑖 and 𝑣𝑗, which is represented by the edge 𝑒𝑖,𝑗. Additionally,

there are input files that are not generated by any of the tasks

within the workflow, and these are referred to as the entry files

of the workflow. These entry files serve as the starting point for

the workflow's execution.

Conversely, the output files that remain unused by any task

within the workflow are referred to as the exit files of the

workflow. To facilitate the scheduling process, two quantities

are defined for each task within the workflow. These quantities

are crucial for making scheduling decisions: the Local Input

Volume of task 𝑣𝑖 on machine 𝑉𝑀𝑗 , denoted as 𝐿𝐼𝑉𝑖,𝑗 , is

calculated as the cumulative size of input files that task 𝑣𝑖
requires, and these input files are locally available on 𝑉𝑀𝑗; the

Local Output Volume of task 𝑣𝑖 on machine 𝑉𝑀𝑗, denoted as

𝐿𝑂𝑉𝑖,𝑗, represents the cumulative size of output files produced

by task 𝑣𝑖. These output files are utilized by the successors of

task 𝑣𝑖, and these successors are also scheduled on 𝑉𝑀𝑗. Note

that if a file is used by more than one successor, its size is

accounted for as many times as successors. The LIV (resp. LOV)

of an entry (resp. exit) task is by definition set to zero.
In the workflow execution process, all intermediate files,

which are files generated by one task and used by another, are
stored locally on the SSD storage of one or possibly multiple
machines. In contrast, the entry and exit files of the workflow
are stored on the EBS (Elastic Block Store) service, which is
accessible by all the machines involved in the workflow. The
time to transfer a file from one machine to another includes the
time to read the file on the disk of the source machine, the
duration of the data transfer over the network and the time to
write the file on disk at destination.

IV. EXECUTION STEP STRATEGIES

In our previous study [5], we introduced a two-step offline

algorithm for scientific workflow scheduling. In the first step,

the goal is to find, for each task in the workflow, the machine

that will execute it earliest and store the maximum of its input

files. The second step, called the rearrangement step, traverses

the workflow level by level, from bottom to top. During the

initial placement, which is performed from top to bottom, only

data volumes from direct predecessors of a task are considered.

It's not possible to account for the data localization required by

a direct descendant of a task until the scheduling of that task is

determined. This can lead to data transfers that could be

avoided.

The objective of this algorithm is to minimize the execution

time (makespan), taking into consideration not only the parallel

execution of certain tasks but also the reduction of data transfers

over the network. In other words, this study does not include

data transfer time, as the algorithm aims to avoid transfers over

the network. However, this is not always feasible due to the

complexity of dependencies that exist between tasks.
The online phase of our previous study [5] is based on the

algorithm shown in Algorithm 1, where the bottom level (𝑏𝑙𝑖)
(line 1) is computed during the offline phase. Ready tasks are
sorted by priority (line 2), which takes into account the start time
(𝑠𝑡𝑖), the bottom level (𝑏𝑙𝑖), and the task identifier. For each
ready task (lines 3 - 9), the VM on which it was scheduled to
execute is determined during the offline phase [5] (line 4). If a
free processor exists on this VM (line 5), the task executes on
the VM (line 6) without considering other tasks, and the count
of free processors is updated on the VM (line 7).

Algorithm 1
1: Compute 𝑏𝑙𝑖 for each task 𝑣𝑖
2: Sort 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 by priority
3: for all 𝑣𝑖 ϵ 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 do
4: 𝑉𝑀𝑘 ← mapping of 𝑣𝑖
5: if 𝑝𝑟𝑜𝑐𝑘 > 0 then
6: execute 𝑣𝑖 on 𝑉𝑀𝑘

7: update 𝑝𝑟𝑜𝑐𝑘
8: endif
9: endfor

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3560

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE I. CHARACTERISTICS OF THE AWS M5D INSTANCES.

Model vCPU Memory (GiB) Instance Storage (GiB) Network Bandwidth (Gbps) EBS Bandwidth (Mbps)

m5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500

m5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500

m5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500

m5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500

m5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000

m5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000

m5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000

m5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000

The principle of Algorithm 2 is to avoid executing a task that

could delay another more prioritized task. Similar to Algorithm
1, Algorithm 2 begins by sorting all ready tasks by priority (line
2). For each ready task (lines 3 - 16), if there is at least one
available processor on the VM designated to execute the task
(line 5), then we have two options. The first option is to execute
this ready task and update the processor count if its 𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒
equals its calculated 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 (lines 5 - 8). The calculated
𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 (line 6) does not take data transfer time into
account. As for the second option (lines 9 - 14), if the
𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 of a ready task is strictly less than its calculated
𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 (line 9) and all tasks (𝑣𝑘) whose calculated
𝑓𝑖𝑛𝑠ℎ_𝑡𝑖𝑚𝑒 equals the calculated 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 of the ready task
(𝑣𝑖) have finished their execution (i.e., released at least one
processor) (line 10), we execute 𝑣𝑖 and update the count of
available processors (line 11 - 12). Note that the calculated
𝑓𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 and 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 do not account for data transfer
time, but rather the data transfer volumes.

V. DISCUSSION

A. Comparative analysis of two strategies

To evaluate the two execution strategies, we employed two
data-intensive parallel applications (scientific workflows) from
the Pegasus Gallery [20]. These workflows are designed to
represent real-world scientific applications.

The characteristics of these applications are provided in
Table II. For applications that do not generate a significant
number of files during their execution (such as Montage), the
results of Algorithms 1 and 2 remain identical.

Algorithm 2
1: Compute 𝑏𝑙𝑖 for each task 𝑣𝑖
2: Sort 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 by priority
3: for all 𝑣𝑖 ϵ 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 do
4: 𝑉𝑀𝑘 ← mapping of 𝑣𝑖
5: if 𝑝𝑟𝑜𝑐𝑘 > 0 then
6: if 𝑟𝑡𝑖 = 𝑠𝑡𝑖 then
7: execute 𝑣𝑖 on 𝑉𝑀𝑘
8: update 𝑝𝑟𝑜𝑐𝑘
9: else if 𝑟𝑡𝑖 < 𝑠𝑡𝑖 then
10: if all tasks 𝑣𝑗 | 𝑓𝑡𝑗 = 𝑠𝑡𝑗 are computed then

11: Execute 𝑣𝑖 on 𝑉𝑀𝑘
12: update 𝑝𝑟𝑜𝑐𝑘
13: end if
14: end if
15: end if
16: end for

1 github.com/GnimEd/gasn

TABLE II. SOME CHARACTERISTICS OF USED WORKFLOWS

Workflow tasks input files size (GB) total files size (GB)

CyberShake 1000 150.76 400.39

Epigenomics 997 1217.72 1230.93

• Epigenomics: is a data processing pipeline to automate
the execution of various genome sequencing operations;

• Cybershake: is an application of the Southern California
Earthquake Center to characterize earthquake hazards.

Our simulations are based on WRENCH 1.5-83d60e and
SimGrid 3.23.3-f2ae928, whose source code is available at the
following address1.
In this section, we evaluate ours execution algorithms,
Algorithm 1 (from the previous study [5]) and Algorithm 2 (for
this new study), considering the scheduling algorithms of
N'Takpé et al. [5] and HEFT [21]. The original HEFT algorithm
uses Algorithm 2; we combine the principles of HEFT with
Algorithm 1 to assess its impact.

For each workflow, we consider infrastructures composed of
different numbers of physical hosts, each with 96 cores. For each
number of physical hosts, we impose the use of a specific
instance size among those described in Table I. Bandwidth
depends on the number of cores per VM, so if VMs have fewer
cores, the execution times are higher.

Figure 1 illustrates the gain of execution time considering the
algorithm proposed in [5]. Algorithm 2 has been specifically
designed to minimize transfer times between workflow tasks. It
takes into account communication constraints and task
dependencies to efficiently execute task scheduling. Therefore,
it is reasonable that Algorithm 2 reduces transfer times compared
to Algorithm 1 with the Epigenomics workflow (Fig. 1b), which
may not be as sophisticated in managing data transfers.
Algorithm 2 confirms the study in [5], which emphasizes data
locality, i.e., reducing data transfers between compute nodes, to
minimize transfer times. For the CyberShake workflow (Fig.
1a), Algorithm 1 provides better results mainly on platforms
with 2 cores per VM.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3561

IJRITCC | September 2023, Available @ http://www.ijritcc.org

(a) Gain between our scheduling algorithm combined with Algorithm 1 versus

Algorithm 2.

(b) Gain between our scheduling algorithm combined with Algorithm 2 versus

Algorithm 1.

Figure 1. Makespan reduction algorithm 1 versus algorithm 2.

Through Figure 2, we compare the gain of the makespan
obtained from HEFT [21] using the two Algorithms (1 and 2) of
execution. The results of Fig. 2a show that Algorithm 2 gives
better results with the CyberShake workflow mainly for
platforms with 2 cores per VM. This is due to several factors.
First, the Algorithm 2 can more efficiently take advantage of the
parallelism offered by platforms with 2 cores per VM, which
allows it to reduce the overall execution time of the workflow.
Second, the Algorithm 2 can achieve strict task scheduling, more
appropriate for the CyberShake workflow, taking into account
specific characteristics of the latter, such as task dependencies
and resource requirements. It is important to note that these
observations are specific to the CyberShake workflow and
platforms with 2 cores per VM. The performance of the two
algorithms may vary depending on the characteristics of the
workflow and the platforms used. However, in our case study,
the Algorithm 2 turns out to be more efficient in terms of
makespan reduction for the CyberShake workflow on platforms
with 2 cores per VM. While in Fig. 2b, we observe a mixed result
from the Algorithm 2 on the Algorithm 1, with the Epigenomics
workflow.

Through the Figure 3, we highlight the reduction of the
execution time of our scheduling algorithm [5] and HEFT. For
the CyberShake workflow, our scheduling algorithm combined
with the Algorithm 1 gives better results compared to HEFT
combined with the Algorithm 1 (see Fig. 3a) on all platforms.

(a) Gain between HEFT combined with Algorithm 1 versus HEFT combined
with Algorithm 2.

(b) Gain between HEFT combined with Algorithm 2 versus HEFT combined
with Algorithm 1.

Figure 2. Makespan reduction for HEFT algorithm.

The reductions on the one hand in the volumes of data on the

network and on the other hand in the transfer time of these data
have an impact on the makespan. Fig. 3b illustrates the gain on
the execution time of our scheduling algorithm combined with
the Algorithm 2 compared to the HEFT scheduling algorithm
combined with the Algorithm 2. We notice a significant gain on
platforms with 2 and 4 cores per VM. This reduction is explained
by the fact that if there are fewer cores per VM, this implies
higher transfer times because the bandwidths are proportional to
the number of cores per VM (cf. Table I).

(a) Gain between our scheduling algorithm combined with Algorithm 1 versus

HEFT combined with Algorithm 1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3562

IJRITCC | September 2023, Available @ http://www.ijritcc.org

(b) Gain between our scheduling algorithm combined with Algorithm 2 versus

HEFT combined with Algorithm 2.

Figure 3. Makespan reduction for our scheduling algorithm versus HEFT.

B. Limitations

The results of the study are highly dependent on the specific

characteristics of the workflows evaluated. Each workflow may

have a different structure, size and resource requirements,

which means that the conclusions drawn from the study may not

be generalizable to other types of workflows. Consequently, it

is essential to recognize that the effectiveness of strategies and

algorithms may vary according to the nature of the workflows.

The study points out that the choice of algorithm depends on the

type of workflows. This means that users must select the

algorithm according to the specific characteristics of their

workflows. However, this adds operational complexity, as there

is no single solution for all types of workflows, which can make

implementation of the approach less practical in real

environments.

One of the study's implementation strategies is based on the
assumption that data transfer times are not taken into account.
This assumption may not be realistic in all situations, as data
transfers between tasks can have a significant impact on actual
workflow performance. By neglecting these transfer times, the
study could underestimate actual costs and execution times.
The results of the study are mainly based on simulations.

Although simulations are useful for controlled experiments,

they may not fully reflect the complexity of real cloud

environments. Results obtained in simulation may differ

significantly from what happens in real conditions due to

unforeseen and unmodeled behavior.

The study does not explicitly address the scalability of the

proposed approach. This omission is important because the

effectiveness of an approach can vary according to the size and

complexity of workflows. Failure to consider scalability may

limit the applicability of the approach on a large scale.
In summary, these limitations underline the importance of taking
into account the specific characteristics of workflows, the
realism of assumptions, validation in real environments, and
consideration of scalability when designing and applying the
proposed approach.

VI. CONCLUSION AND FUTURE WORK

The makespan represents the total time required to complete

all tasks. By choosing the version of the algorithm best suited

to the type of workflow, we can aim for a significant reduction

in makespan. This translates into a faster execution of the

workflow, enabling the desired results to be achieved in a

shorter time.

Makespan has a direct impact on the cost of using cloud

resources, which is billed on a per-use basis. By choosing the

right version of the algorithm, we can optimize the use of

available resources, avoiding waste and unnecessary

expenditure. By choosing the best version of the algorithm for

the type of workflow, we can achieve an optimum compromise

between makespan and the cost of using cloud resources.

As part of our future work, we aim to validate the effectiveness

of our proposed algorithms, we intend to conduct comparisons

between simulated executions and real-world runs on the AWS

(Amazon Web Services) cloud platform, specifically utilizing

M5d instances. This empirical validation will help us confirm

the practical impact and performance of the algorithms. Another

avenue of research involves exploring a multi-objective

approach where one of the optimization objectives is fixed. In

other words, we'll investigate scenarios where either a

predefined budget or a fixed deadline is set as a constraint, and

the scheduling algorithm operates within these bounds to

optimize the other objective.

REFERENCES

[1] I. Taylor, E. Deelman, D. Gannon, et M. Shields, Workflows for
e-Science: Scientific Workflows for Grids. Springer Publishing

Company, Incorporated, 2014.

[2] E. Deelman et al., « Pegasus, a Workflow Management System

for Science Automation », Future Generation Computing
Systems, vol. 46, p. 17‑35, 2015.

[3] J. Liu, E. Pacitti, P. Valduriez, et M. Mattoso, « A Survey of

Data-Intensive Scientific Workflow Management », J Grid

Computing, vol. 13, no 4, p. 457‑493, déc. 2015, doi:
10.1007/s10723-015-9329-8.

[4] R. Ferreira Da Silva, R. Filgueira, I. Pietri, M. Jiang, R.

Sakellariou, et E. Deelman, « A characterization of workflow

management systems for extreme-scale applications », Future
Generation Computer Systems, vol. 75, p. 228‑238, oct. 2017,

doi: 10.1016/j.future.2017.02.026.

[5] T. N’Takpé, J. Edgard Gnimassoun, S. Oumtanaga, et F. Suter,

« Data-aware and simulation-driven planning of scientific
workflows on IaaS clouds », Concurrency and Computation:

Practice and Experience, vol. 34, no 14, p. e6719, 2022.

[6] T. Shu et C. Q. Wu, « Energy-Efficient Mapping of Large-Scale

Workflows Under Deadline Constraints in Big Data Computing
Systems », Future Generation Computer Systems, vol. 110, p.

515‑530, 2020, doi: 10.1016/j.future.2017.07.050.

[7] J. Thaman et M. Singh, « Green cloud environment by using

robust planning algorithm », Egyptian Informatics Journal, vol.
18, no 3, p. 205‑214, nov. 2017, doi: 10.1016/j.eij.2017.02.001.

[8] V. Arabnejad, K. Bubendorfer, B. Ng, et K. Chard, « A Deadline

Constrained Critical Path Heuristic for Cost-Effectively
Scheduling Workflows », in Proceedings of the 8th IEEE/ACM

International Conference on Utility and Cloud Computing

(UCC), Limassol, Cyprus, déc. 2015, p. 242‑250.

[9] Z.-J. Wang et al., « Dynamic Group Learning Distributed
Particle Swarm Optimization for Large-Scale Optimization and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3563

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Its Application in Cloud Workflow Scheduling », IEEE
Transactions on Cybernetics, vol. 50, no 6, p. 2715‑2729, 2020,

doi: 10.1109/TCYB.2019.2933499.

[10] Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, et J. Wen, « Deadline-

Constrained Cost Optimization Approaches for Workflow
Scheduling in Clouds », IEEE Trans. Parallel Distrib. Syst., vol.

28, no 12, p. 3401‑3412, déc. 2017, doi:

10.1109/TPDS.2017.2735400.

[11] Z. Zhu et X. Tang, « Deadline-constrained workflow scheduling
in IaaS clouds with multi-resource packing », Future Generation

Computer Systems, vol. 101, p. 880‑893, déc. 2019, doi:

10.1016/j.future.2019.07.043.

[12] A. Rezaeian, H. Abrishami, S. Abrishami, et M. Naghibzadeh,
« A Budget Constrained Scheduling Algorithm for Hybrid Cloud

Computing Systems Under Data Privacy », in Proceedings of the

2016 IEEE International Conference on Cloud Engineering

(IC2E), Berlin, Germany, avr. 2016, p. 230‑231.
[13] N. Rizvi et D. Ramesh, « Fair budget constrained workflow

scheduling approach for heterogeneous clouds », Cluster

Comput, vol. 23, no 4, p. 3185‑3201, déc. 2020, doi:

10.1007/s10586-020-03079-1.
[14] M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, et A.

Khoshnevis, « Multi-Objective Task and Workflow Scheduling

Approaches in Cloud Computing: a Comprehensive Review », J

Grid Computing, vol. 18, no 3, p. 327‑356, sept. 2020, doi:
10.1007/s10723-020-09533-z.

[15] Z.-G. Chen et al., « Multiobjective Cloud Workflow Scheduling:

A Multiple Populations Ant Colony System Approach », IEEE

Transactions on Cybernetics, vol. 49, no 8, p. 2912‑2926, 2019,
doi: 10.1109/TCYB.2018.2832640.

[16] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, et S. Hu,

« Minimizing Cost and Makespan for Workflow Scheduling in

Cloud Using Fuzzy Dominance Sort Based HEFT », Future
Generation Computer Systems, vol. 93, p. 278‑289, avr. 2019.

[17] Amazon Elastic Compute Cloud (EC2),

https://aws.amazon.com/ec2. Accessed 29 May 2023

[18] R. Mathá, S. Ristov, T. Fahringer, et R. Prodan, « Simplified
Workflow Simulation on Clouds based on Computation and

Communication Noisiness », IEEE Trans. Parallel Distrib. Syst.,

vol. 31, no 7, p. 1559‑1574, juill. 2020, doi:

10.1109/TPDS.2020.2967662.
[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, et K.

Vahi, « Characterizing and Profiling Scientific Workflows »,

Future Generation Computer Systems, vol. 29, no 3, p. 682‑692,

2013.
[20] Pegasus Workflow Gallery,

http://pegasus.isi.edu/workflow_gallery. Accessed 13 May 2023

[21] H. Topcuoglu, S. Hariri, et M.-Y. Wu, « Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous
Computing », IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no 3, p. 260‑274, 2002, doi:

10.1109/71.993206.

http://www.ijritcc.org/

