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 Abstract—The IaaS platforms of the Cloud hold promise for executing parallel applications, particularly data-intensive scientific 

workflows. An important challenge for users of these platforms executing scientific workflows is to strike the right trade-off between the 

execution time of the scientific workflow and the cost of using the platform. In a previous article, we proposed an efficient approach that assists 
the user in finding this compromise. This approach requires an algorithm aimed at minimizing the execution time of the workflow once the 

platform configuration is set. In this article, we compare two different strategies for executing a workflow after its offline scheduling using an 

algorithm. The algorithm that we proposed in the previous study has outperform the HEFT algorithm. 

The first strategy allows some ready tasks to execute earlier than other higher-priority tasks that are ready later due to data transfer times. 
This strategy is justified by the fact that although our scheduling algorithm attempts to minimize data transfers between tasks running on 

different virtual machines, this algorithm does not include data transfer times in the planned execution dates for the various tasks of the 

workflow. The second strategy strictly adheres to the predetermined order among tasks scheduled on the same virtual machine. 

The results of our evaluations show that the best execution strategy depends on the characteristics of the workflow. For each evaluated 
workflow, our results demonstrate that our scheduling algorithm combined with the best execution strategy surpasses HEFT. The choice of the 

best strategy must be determined experimentally following realistic simulations, such as the ones we conduct here using the WRENCH 

framework, before conducting simulations to find the best compromise between cost and execution time of a workflow on an IaaS platform.. 

Keywords-workflow scheduling, makespan reduction, data-intensive workflows, IaaS cloud 

 

 

I.  INTRODUCTION 

Data-intensive parallel applications come from various 

fields and are modelled by Directed Acyclic Graphs (DAGs) 

[1]. The execution of these data-intensive parallel applications, 

including thousands of tasks on large-scale distributed 

infrastructures, is typically managed by a Workflow 

Management System (WMS) [2]–[4]. Cloud IaaS platforms 

hold promise for the execution of such applications, given the 

substantial number of parallelizable computing cores and the 

availability of storage resources.  

The description of a scientific workflow is typically 

independent of the specific characteristics of the infrastructure 

on which it will be executed. This offers the advantage of 

providing users with great flexibility, allowing them to execute 

the same workflow on different infrastructures without having 

to modify their application. 
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A direct consequence of this flexibility is that task 

dependencies (where one task produces data subsequently 

consumed by another task) are generally managed using files. 

Intermediate data produced is written to a storage medium, and 

then the file can be transferred over the network to another 

storage device where the consuming task can eventually read it.  

In [5] we discussed the scheduling and execution of data-
intensive parallel applications on Infrastructure as a Service 
(IaaS) clouds. Although workflow management systems can 
accommodate a customized execution infrastructure for these 
applications, shared storage space can become a bottleneck. To 
solve this problem, a data-aware scheduling algorithm has been 
proposed that exploits the dedicated storage space (fast SSD 
disks) at each virtual machine to improve data localization. This 
reduces data transfers over the network during workflow 
execution. The main aim of the algorithm is to help IaaS cloud 
users find a good compromise between their workflow execution 
time and the cost of using IaaS cloud resources, by selecting sets 
of VM instances on the Pareto front. But long before that, we 
showed that to minimize execution time for a fixed number of 
cores, priority should be given to large VM instances (96 cores). 
This study showed that after the scheduling phase (offline), there 
could be several scenarios during the execution phase (online). 
The idea that we are going to develop in this study concerns the 
comparison of two different strategies for the execution step of 
a workflow after its scheduling on an IaaS platform. 

This document is structured as follows. In section 2, we 
review the related work on scheduling scientific workflows on 
cloud IaaS. In section 3, we provide a description of the platform 
and application models used in this study. Then, in section 4, we 
recall the online algorithm of [5] and detail the proposed new 
execution strategy that respects the scheduling order, while the 
performances of the two execution strategies are evaluated in 
section 5. Finally, we conclude this article in section 6. 

II. RELATED WORKS 

While some studies on scientific workflow scheduling 

algorithms aim to minimize dynamic energy consumption [6], 

[7], scheduling algorithms for scientific workflows targeting 

IaaS clouds generally strive to find the best compromise 

between workflow execution time and the number (type) of 

virtual machine instances used for execution. Following the 

pay-as-you-go model of IaaS clouds, this resource quantity 

often corresponds to a certain cost. A typical approach involves 

fixing one objective as a constraint, such as a deadline [8]–[11] 

or a budget [12], [13] and optimizing the other objective. Some 

papers directly solve this bi-objective optimization problem by 

selecting a solution from those comprising the Pareto front 

[14]–[16]. These heuristics usually involve variations of 

scheduling and aim to find a single solution with favorable 

properties. 

The Deadline Constrained Critical Path (DCCP) [8] is a list-

based scheduling algorithm used in cloud computing. Its 

primary objective is to fulfill the user-defined workflow 

deadline while minimizing the overall execution cost. Both 

algorithms within DCCP share a common preprocessing step. 

During this initial phase, tasks are organized into different 

levels, each level being assigned a sub-deadline. The user-

defined deadline is distributed non-uniformly among these 

levels, ensuring that levels with longer task execution times 

receive correspondingly longer sub-deadlines. However, DCCP 

employs a distinct approach in the task prioritization step. To 

enhance the efficiency of communication within the entire 

workflow, DCCP introduces the concept of the Constrained 

Critical Path (CCP). This involves assigning all tasks on a 

specific path to a single resource. DCCP identifies all CCPs 

within a workflow using a modified ranking method and 

compiles a list of these CCPs. During each step of the 

scheduling process, only the tasks within a CCP that are ready 

for execution are allocated to the appropriate resource, while the 

remaining tasks are held for subsequent steps. 

The authors of [9] introduced a dynamic group learning 

distributed particle swarm optimization (DGLDPSO) method 

designed for large-scale optimization tasks. Furthermore, it 

extends the application of DGLDPSO to the domain of large-

scale cloud workflow scheduling. DGLDPSO is particularly 

well-suited for addressing large-scale optimization challenges, 

owing to two key advantages. Firstly, it segments the entire 

population into numerous groups, employing a master-slave 

multigroup distributed model that facilitates the coevolution of 

these groups. This results in the formation of a distributed 

Particle Swarm Optimization (DPSO) system, enhancing 

algorithmic diversity. Secondly, DGLDPSO incorporates a 

dynamic group learning (DGL) strategy within DPSO, striking 

a balance between diversity and convergence. When 

DGLDPSO is employed in the context of large-scale cloud 

workflow scheduling, an adaptive renumbering strategy (ARS) 

is developed to tailor solutions to the unique characteristics of 

the available resources. This strategy ensures that the search 

process is purposeful and meaningful, rather than arbitrary. The 

article conducts experiments on both large-scale benchmark 

function sets and large-scale cloud workflow scheduling 

instances to evaluate the performance of DGLDPSO. 

Comparative analysis of the results demonstrates that 

DGLDPSO outperforms or, at the very least, matches the 

performance of other state-of-the-art large-scale optimization 

algorithms and workflow scheduling algorithms. 
In their study, Wu et al. [10] introduced two deadline-

constrained algorithms, namely Probabilistic Listing (ProLis) 
and L-ACO, with the objective of minimizing the makespan in 
cloud-based workflow scheduling. The ProLis algorithm plays a 
crucial role in this context by distributing deadlines to individual 
tasks, ranking these tasks, and subsequently allocating the 
necessary resources in a sequential manner to meet the Quality 
of Service (QoS) requirements for each task's execution. 
Additionally, L-ACO leverages Ant Colony Optimization 
(ACO) to construct various task-order lists. These lists are 
instrumental in identifying effective scheduling solutions that 
adhere to the deadline constraint while minimizing the makespan 
and associated costs. However, it's important to note that the 
study conducted by Wu et al. did not delve into addressing 
performance variations or consider the start-up/boot time of 
virtual machines (VMs) in their analysis. 

In [11], the authors investigate a novel workflow scheduling 
model designed for heterogeneous Infrastructure-as-a-Service 
(IaaS) platforms. This model allows multiple tasks to execute 
concurrently on a virtual machine (VM) based on their varying 
demands for multiple resources. The authors introduce a list-
scheduling framework as the foundation for this new multi-
programmed cloud resource model. Within this framework, 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 
 

 

    3558 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

tasks are assigned placements in a prioritized sequence, 
considering both existing and new VMs available on the 
platform. Different task prioritization methods and placement 
comparison techniques can be employed to achieve various 
scheduling objectives. Additionally, to leverage the diversity of 
IaaS platforms, VMs can be dynamically scaled up during the 
scheduling process. Subsequently, the authors present a 
deadline-constrained workflow scheduling algorithm named 
DyDL, built upon this framework. DyDL is designed to optimize 
the cost associated with workflow execution while adhering to 
specified deadlines. This algorithm prioritizes tasks based on 
their latest start times and assigns them placements that not only 
meet their latest start time requirements but also incur minimal 
cost increases. 

Experimental results demonstrate that DyDL consistently 
outperforms several existing deadline-constrained workflow 
scheduling algorithms in the majority of test cases, highlighting 
its effectiveness in achieving superior schedules. 

In the context of a hybrid cloud model [12], organizations 
have the flexibility to safeguard their sensitive information and 
critical applications within the confines of a private cloud 
environment while simultaneously offloading other data and 
applications to a public cloud when necessary. This hybrid 
approach offers a balance between security and scalability. To 
ensure the preservation of data privacy in workflow applications, 
the authors of this study introduce a budget-constrained hybrid 
cloud scheduler (BCHCS). BCHCS operates as a static heuristic 
scheduling algorithm, capable of making informed decisions 
regarding the allocation of sensitive tasks to the private cloud 
and utilizing the resources of the public cloud for non-sensitive 
tasks. The primary objective is to minimize the makespan (the 
total duration of the workflow) while adhering to the budget 
constraints imposed by the user. Notably, experimental results 
reveal the efficacy of this proposed method. It successfully 
guarantees the execution of sensitive tasks within the private 
cloud, while also achieving a minimum of 7 percent reduction in 
makespan and a higher success rate in comparison to similar 
existing techniques. This underscores the BCHCS's ability to 
strike a balance between data privacy and cost-efficiency, 
making it a valuable tool for organizations navigating the 
complexities of hybrid cloud environments. 

In their research, Rizvi et al. [13]  introduced a workflow 
scheduling policy called the "fair budget scheduling algorithm." 
The primary objective of this algorithm is to reduce both the 
computational cost and the execution time of workflows. To 
assess its effectiveness, the authors implemented various 
scientific workflows and conducted a comparative analysis of 
the outcomes against their proposed technique. To substantiate 
the efficacy of their approach, the obtained results underwent 
verification through the analysis of variance (ANOVA) test. The 
ANOVA test is a statistical method used to assess the 
significance of differences between multiple groups or 
treatments. In this context, it likely helped confirm whether the 
fair budget scheduling algorithm indeed produced statistically 
significant improvements in computational cost and execution 
time compared to alternative methods. 

The paper [15] addresses the challenge of cloud workflow 
scheduling by formulating it as a multi-objective optimization 
problem that aims to optimize both execution time and execution 
cost. To tackle this problem, the authors introduce a novel multi-
objective ant colony system based on a co-evolutionary multiple 
population for multiple objectives framework. This framework 

involves the use of two separate ant colonies, each dedicated to 
handling one of the two optimization objectives, namely 
execution time and execution cost. Furthermore, this approach 
incorporates three innovative strategies to effectively address the 
complexities posed by multi-objective optimization: i) a fresh 
pheromone update rule is introduced, which is guided by a set of 
nondominated solutions derived from a global archive. This 
update mechanism helps each ant colony to adequately search 
for its respective optimization objective; ii) a complementary 
heuristic strategy is employed to ensure that a colony doesn't 
exclusively focus on its individual optimization objective. 
Instead, it cooperates with the pheromone update rule to balance 
the exploration of both objectives, enhancing the overall search 
and iii) an elite study strategy is introduced to enhance the 
solution quality of the global archive. This strategy aims to bring 
the archive closer to the global Pareto front, thereby improving 
the quality of the overall solutions. The authors conducted 
experimental simulations using five real-world scientific 
workflows while considering the characteristics of the Amazon 
EC2 cloud platform. The results of these experiments 
demonstrate that the proposed algorithm outperforms both state-
of-the-art multi-objective optimization approaches and 
constrained optimization approaches. 

In their work, Zhou et al. [16] introduced the Fuzzy 
Dominance Sort based Heterogeneous Earliest-Finish-Time 
(FDHEFT) algorithm, designed to optimize the cost and 
makespan of workflows executed on Infrastructure-as-a-Service 
(IaaS) cloud platforms. This algorithm takes a fuzzy dominance 
sorting approach to efficiently schedule tasks. 

However, the authors noted a limitation in their approach. 
They pointed out that these methods heavily rely on prior expert 
knowledge and have a static global perspective. This means that 
they are not well-suited to capturing the dynamic nature of 
workflow scheduling. In dynamic environments, where 
conditions and requirements change over time, relying solely on 
static knowledge may not adequately address the evolving needs 
of workflow execution. This limitation underscores the need for 
more adaptive and flexible scheduling approaches that can 
respond to real-time changes and dynamic workload conditions 
in cloud environments. 

III. PLATFORMS AND APPLICATIONS MODELS 

In this paper, our platform model is built upon a standard 

IaaS cloud configuration. We deploy multiple virtual machine 

(VM) instances within a single datacenter on physical servers. 

Specifically, we focus on a set of VMs similar to Amazon EC2 

M5 instances [17], specifically M5d instances, which come 

with local storage on NVMe SSD drives. In contrast, regular 

M5 instances rely on the Amazon Elastic Block Storage (EBS) 

service for data storage. You can find detailed characteristics of 

the available M5d instances in Table I. 

The instance series in question provides a range of virtual 

cores (vCPUs) from 2 to 96, each with a consistent 4GiB of 

memory per core. Amazon typically deploys these instances on 

nodes equipped with Intel Xeon Platinum 8000 series 

processors. The unique feature of M5d instances is the 

attachment of fast block-level storage on SSD drives, directly 

linked to the instance's lifespan. Our objective in this study is to 

harness this rapid storage, shared by the vCPUs within an 

instance but dedicated to them, for storing intermediate files 

generated during workflow execution. This approach minimizes 
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network data transfers for tasks scheduled on the same virtual 

machine, with only the workflow's entry and exit files stored on 

an external storage node. 

The network bandwidth available to other instances or the 

EBS varies with the instance size. We assume that only the 

largest instances, capable of utilizing an entire node (i.e., with 

48, 64, or 96 vCPUs), guarantee network bandwidths of 10, 20, 

and 25 Gbps, respectively. For smaller instances, ranging from 

2 to 32 cores, the available bandwidth is proportionate to the 

number of cores, set at 208.33 Mbps per core. All virtual 

machine instances initiated for a given workflow are 

interconnected through a single switch. 

In line with the M5d instance description, our simulated 

infrastructure takes into account the dedicated network link 

from a VM to the EBS. Regarding network connections 

between VMs, we assume that the bandwidth of the dedicated 

connection between a VM and the EBS scales with the number 

of cores for smaller VMs, up to 32 cores (equivalent to 218.75 

Mbps per core). 
While it has been shown in reference [18] that bandwidth 

depends on factors like file sizes, the number of files, and 
instance types, our simulations operate under the assumption of 
reliable Quality of Service (QoS) and adherence to the 
performance characteristics defined by the cloud provider for the 
allocated resources.  

The scientific workflows we aim to schedule are represented 

as Directed Acyclic Graphs (DAGs), denoted as G = Ԍ={Ѵ,ℇ}. 

In this representation, Ѵ = {𝑣𝑖 | 𝑖 = 1,…,V} represents a set of 

vertices, which correspond to the computational tasks within the 

workflow, and ℇ = { 𝑒𝑖,𝑗  | (𝑖, 𝑗)  ϵ {1,…,V} x {1,…,V}} 

represents a set of edges connecting these vertices. These edges 

serve two primary purposes: they either signify a data 

dependency, indicating a file transfer requirement, or they 

represent a flow dependency between two tasks. 

Our specific focus is on workflows that consist of a 

significant number of sequential tasks, each of which runs on a 

single core. This characteristic is typical of real scientific 

applications [19]. Each task within the workflow has a 

predefined or estimated duration, necessitates a set of input files 

to initiate its execution, and generates a set of output files upon 

completion. To describe these input and output files for a given 

task 𝑣𝑖 , we use the notation 𝐼𝑛𝑝𝑢𝑡𝑖
𝑘  (for input files) and 

𝑂𝑢𝑡𝑝𝑢𝑡𝑖
𝑘 (for output files), where "k" represents the file index. 

When an output file produced by one task 𝑣𝑖 , is required as 

input by another task 𝑣𝑗, this creates a data dependency between 

𝑣𝑖 and 𝑣𝑗, which is represented by the edge 𝑒𝑖,𝑗. Additionally, 

there are input files that are not generated by any of the tasks 

within the workflow, and these are referred to as the entry files 

of the workflow. These entry files serve as the starting point for 

the workflow's execution. 

Conversely, the output files that remain unused by any task 

within the workflow are referred to as the exit files of the 

workflow. To facilitate the scheduling process, two quantities 

are defined for each task within the workflow. These quantities 

are crucial for making scheduling decisions: the Local Input 

Volume of task 𝑣𝑖   on machine 𝑉𝑀𝑗 , denoted as 𝐿𝐼𝑉𝑖,𝑗 , is 

calculated as the cumulative size of input files that task 𝑣𝑖 
requires, and these input files are locally available on 𝑉𝑀𝑗; the 

Local Output Volume of task 𝑣𝑖 on machine 𝑉𝑀𝑗, denoted as 

𝐿𝑂𝑉𝑖,𝑗, represents the cumulative size of output files produced 

by task 𝑣𝑖. These output files are utilized by the successors of 

task 𝑣𝑖, and these successors are also scheduled on 𝑉𝑀𝑗. Note 

that if a file is used by more than one successor, its size is 

accounted for as many times as successors. The LIV (resp. LOV) 

of an entry (resp. exit) task is by definition set to zero. 
In the workflow execution process, all intermediate files, 

which are files generated by one task and used by another, are 
stored locally on the SSD storage of one or possibly multiple 
machines. In contrast, the entry and exit files of the workflow 
are stored on the EBS (Elastic Block Store) service, which is 
accessible by all the machines involved in the workflow. The 
time to transfer a file from one machine to another includes the 
time to read the file on the disk of the source machine, the 
duration of the data transfer over the network and the time to 
write the file on disk at destination. 

IV. EXECUTION STEP STRATEGIES 

In our previous study [5], we introduced a two-step offline 

algorithm for scientific workflow scheduling. In the first step, 

the goal is to find, for each task in the workflow, the machine 

that will execute it earliest and store the maximum of its input 

files. The second step, called the rearrangement step, traverses 

the workflow level by level, from bottom to top. During the 

initial placement, which is performed from top to bottom, only 

data volumes from direct predecessors of a task are considered. 

It's not possible to account for the data localization required by 

a direct descendant of a task until the scheduling of that task is 

determined. This can lead to data transfers that could be 

avoided. 

The objective of this algorithm is to minimize the execution 

time (makespan), taking into consideration not only the parallel 

execution of certain tasks but also the reduction of data transfers 

over the network. In other words, this study does not include 

data transfer time, as the algorithm aims to avoid transfers over 

the network. However, this is not always feasible due to the 

complexity of dependencies that exist between tasks. 
The online phase of our previous study [5] is based on the 

algorithm shown in Algorithm 1, where the bottom level (𝑏𝑙𝑖) 
(line 1) is computed during the offline phase. Ready tasks are 
sorted by priority (line 2), which takes into account the start time 
(𝑠𝑡𝑖), the bottom level (𝑏𝑙𝑖), and the task identifier. For each 
ready task (lines 3 - 9), the VM on which it was scheduled to 
execute is determined during the offline phase [5] (line 4). If a 
free processor exists on this VM (line 5), the task executes on 
the VM (line 6) without considering other tasks, and the count 
of free processors is updated on the VM (line 7). 

 
Algorithm 1 
1: Compute 𝑏𝑙𝑖 for each task 𝑣𝑖 
2: Sort 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 by priority 
3: for all 𝑣𝑖 ϵ 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 do 
4:           𝑉𝑀𝑘 ← mapping of 𝑣𝑖 
5:           if 𝑝𝑟𝑜𝑐𝑘 > 0 then 
6:                     execute 𝑣𝑖 on 𝑉𝑀𝑘 

7:                     update 𝑝𝑟𝑜𝑐𝑘 
8:           endif 
9: endfor 
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TABLE I.  CHARACTERISTICS OF THE AWS M5D INSTANCES. 

Model vCPU Memory (GiB) Instance Storage (GiB) Network Bandwidth (Gbps) EBS Bandwidth (Mbps) 

m5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500 

m5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500 

m5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500 

m5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500 

m5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000 

m5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000 

m5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000 

m5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000 

 
The principle of Algorithm 2 is to avoid executing a task that 

could delay another more prioritized task. Similar to Algorithm 
1, Algorithm 2 begins by sorting all ready tasks by priority (line 
2). For each ready task (lines 3 - 16), if there is at least one 
available processor on the VM designated to execute the task 
(line 5), then we have two options. The first option is to execute 
this ready task and update the processor count if its 𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 
equals its calculated 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 (lines 5 - 8). The calculated 
𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒  (line 6) does not take data transfer time into 
account. As for the second option (lines 9 - 14), if the 
𝑟𝑒𝑎𝑑𝑦_𝑡𝑖𝑚𝑒 of a ready task is strictly less than its calculated 
𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒  (line 9) and all tasks ( 𝑣𝑘 ) whose calculated 
𝑓𝑖𝑛𝑠ℎ_𝑡𝑖𝑚𝑒 equals the calculated 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 of the ready task 
(𝑣𝑖 ) have finished their execution (i.e., released at least one 
processor) (line 10), we execute 𝑣𝑖  and update the count of 
available processors (line 11 - 12). Note that the calculated 
𝑓𝑖𝑛𝑖𝑠ℎ_𝑡𝑖𝑚𝑒 and 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 do not account for data transfer 
time, but rather the data transfer volumes. 

 

V. DISCUSSION 

A. Comparative analysis of two strategies 

To evaluate the two execution strategies, we employed two 
data-intensive parallel applications (scientific workflows) from 
the Pegasus Gallery [20]. These workflows are designed to 
represent real-world scientific applications. 

The characteristics of these applications are provided in 
Table II. For applications that do not generate a significant 
number of files during their execution (such as Montage), the 
results of Algorithms 1 and 2 remain identical. 

 
Algorithm 2 
1: Compute 𝑏𝑙𝑖  for each task 𝑣𝑖 
2: Sort 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 by priority 
3: for all 𝑣𝑖 ϵ 𝑟𝑒𝑎𝑑𝑦_𝑡𝑎𝑠𝑘𝑠 do 
4:           𝑉𝑀𝑘 ← mapping of 𝑣𝑖 
5:           if 𝑝𝑟𝑜𝑐𝑘 > 0 then 
6:                     if 𝑟𝑡𝑖  = 𝑠𝑡𝑖 then 
7:                               execute 𝑣𝑖 on 𝑉𝑀𝑘 
8:                               update 𝑝𝑟𝑜𝑐𝑘 
9:                     else if 𝑟𝑡𝑖  < 𝑠𝑡𝑖 then 
10:                               if all tasks 𝑣𝑗 | 𝑓𝑡𝑗 =  𝑠𝑡𝑗 are computed then 

11:                                         Execute 𝑣𝑖 on 𝑉𝑀𝑘 
12:                                         update 𝑝𝑟𝑜𝑐𝑘 
13:                               end if 
14:                     end if 
15:           end if 
16: end for 

 
1 github.com/GnimEd/gasn 

 

TABLE II.  SOME CHARACTERISTICS OF USED WORKFLOWS 

Workflow tasks input files size (GB) total files size (GB) 

CyberShake 1000 150.76 400.39 

Epigenomics 997 1217.72 1230.93 

 

• Epigenomics: is a data processing pipeline to automate 
the execution of various genome sequencing operations; 

• Cybershake: is an application of the Southern California 
Earthquake Center to characterize earthquake hazards. 

Our simulations are based on WRENCH 1.5-83d60e and 
SimGrid 3.23.3-f2ae928, whose source code is available at the 
following address1. 
In this section, we evaluate ours execution algorithms, 
Algorithm 1 (from the previous study [5]) and Algorithm 2 (for 
this new study), considering the scheduling algorithms of 
N'Takpé et al. [5] and HEFT [21]. The original HEFT algorithm 
uses Algorithm 2; we combine the principles of HEFT with 
Algorithm 1 to assess its impact. 

For each workflow, we consider infrastructures composed of 
different numbers of physical hosts, each with 96 cores. For each 
number of physical hosts, we impose the use of a specific 
instance size among those described in Table I. Bandwidth 
depends on the number of cores per VM, so if VMs have fewer 
cores, the execution times are higher. 

Figure 1 illustrates the gain of execution time considering the 
algorithm proposed in [5]. Algorithm 2 has been specifically 
designed to minimize transfer times between workflow tasks. It 
takes into account communication constraints and task 
dependencies to efficiently execute task scheduling. Therefore, 
it is reasonable that Algorithm 2 reduces transfer times compared 
to Algorithm 1 with the Epigenomics workflow (Fig. 1b), which 
may not be as sophisticated in managing data transfers. 
Algorithm 2 confirms the study in [5], which emphasizes data 
locality, i.e., reducing data transfers between compute nodes, to 
minimize transfer times. For the CyberShake workflow (Fig. 
1a), Algorithm 1 provides better results mainly on platforms 
with 2 cores per VM. 
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(a) Gain between our scheduling algorithm combined with Algorithm 1 versus 

Algorithm 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Gain between our scheduling algorithm combined with Algorithm 2 versus 

Algorithm 1. 
 

Figure 1.  Makespan reduction algorithm 1 versus algorithm 2. 

 

Through Figure 2, we compare the gain of the makespan 
obtained from HEFT [21] using the two Algorithms (1 and 2) of 
execution. The results of Fig. 2a show that Algorithm 2 gives 
better results with the CyberShake workflow mainly for 
platforms with 2 cores per VM. This is due to several factors. 
First, the Algorithm 2 can more efficiently take advantage of the 
parallelism offered by platforms with 2 cores per VM, which 
allows it to reduce the overall execution time of the workflow. 
Second, the Algorithm 2 can achieve strict task scheduling, more 
appropriate for the CyberShake workflow, taking into account 
specific characteristics of the latter, such as task dependencies 
and resource requirements. It is important to note that these 
observations are specific to the CyberShake workflow and 
platforms with 2 cores per VM. The performance of the two 
algorithms may vary depending on the characteristics of the 
workflow and the platforms used. However, in our case study, 
the Algorithm 2 turns out to be more efficient in terms of 
makespan reduction for the CyberShake workflow on platforms 
with 2 cores per VM. While in Fig. 2b, we observe a mixed result 
from the Algorithm 2 on the Algorithm 1, with the Epigenomics 
workflow. 

Through the Figure 3, we highlight the reduction of the 
execution time of our scheduling algorithm [5] and HEFT. For 
the CyberShake workflow, our scheduling algorithm combined 
with the Algorithm 1 gives better results compared to HEFT 
combined with the Algorithm 1 (see Fig. 3a) on all platforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Gain between HEFT combined with Algorithm 1 versus HEFT combined 
with Algorithm 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Gain between HEFT combined with Algorithm 2 versus HEFT combined 
with Algorithm 1. 

 

Figure 2.  Makespan reduction for HEFT algorithm. 

 
The reductions on the one hand in the volumes of data on the 

network and on the other hand in the transfer time of these data 
have an impact on the makespan. Fig. 3b illustrates the gain on 
the execution time of our scheduling algorithm combined with 
the Algorithm 2 compared to the HEFT scheduling algorithm 
combined with the Algorithm 2. We notice a significant gain on 
platforms with 2 and 4 cores per VM. This reduction is explained 
by the fact that if there are fewer cores per VM, this implies 
higher transfer times because the bandwidths are proportional to 
the number of cores per VM (cf. Table I). 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Gain between our scheduling algorithm combined with Algorithm 1 versus 

HEFT combined with Algorithm 1. 
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(b) Gain between our scheduling algorithm combined with Algorithm 2 versus 

HEFT combined with Algorithm 2. 
 

Figure 3.  Makespan reduction for our scheduling algorithm versus HEFT. 

B. Limitations  

The results of the study are highly dependent on the specific 

characteristics of the workflows evaluated. Each workflow may 

have a different structure, size and resource requirements, 

which means that the conclusions drawn from the study may not 

be generalizable to other types of workflows. Consequently, it 

is essential to recognize that the effectiveness of strategies and 

algorithms may vary according to the nature of the workflows. 

The study points out that the choice of algorithm depends on the 

type of workflows. This means that users must select the 

algorithm according to the specific characteristics of their 

workflows. However, this adds operational complexity, as there 

is no single solution for all types of workflows, which can make 

implementation of the approach less practical in real 

environments. 

One of the study's implementation strategies is based on the 
assumption that data transfer times are not taken into account. 
This assumption may not be realistic in all situations, as data 
transfers between tasks can have a significant impact on actual 
workflow performance. By neglecting these transfer times, the 
study could underestimate actual costs and execution times. 
The results of the study are mainly based on simulations. 

Although simulations are useful for controlled experiments, 

they may not fully reflect the complexity of real cloud 

environments. Results obtained in simulation may differ 

significantly from what happens in real conditions due to 

unforeseen and unmodeled behavior. 

The study does not explicitly address the scalability of the 

proposed approach. This omission is important because the 

effectiveness of an approach can vary according to the size and 

complexity of workflows. Failure to consider scalability may 

limit the applicability of the approach on a large scale. 
In summary, these limitations underline the importance of taking 
into account the specific characteristics of workflows, the 
realism of assumptions, validation in real environments, and 
consideration of scalability when designing and applying the 
proposed approach. 
 
 

VI. CONCLUSION AND FUTURE WORK 

The makespan represents the total time required to complete 

all tasks. By choosing the version of the algorithm best suited 

to the type of workflow, we can aim for a significant reduction 

in makespan. This translates into a faster execution of the 

workflow, enabling the desired results to be achieved in a 

shorter time.  

Makespan has a direct impact on the cost of using cloud 

resources, which is billed on a per-use basis. By choosing the 

right version of the algorithm, we can optimize the use of 

available resources, avoiding waste and unnecessary 

expenditure. By choosing the best version of the algorithm for 

the type of workflow, we can achieve an optimum compromise 

between makespan and the cost of using cloud resources. 

As part of our future work, we aim to validate the effectiveness 

of our proposed algorithms, we intend to conduct comparisons 

between simulated executions and real-world runs on the AWS 

(Amazon Web Services) cloud platform, specifically utilizing 

M5d instances. This empirical validation will help us confirm 

the practical impact and performance of the algorithms. Another 

avenue of research involves exploring a multi-objective 

approach where one of the optimization objectives is fixed. In 

other words, we'll investigate scenarios where either a 

predefined budget or a fixed deadline is set as a constraint, and 

the scheduling algorithm operates within these bounds to 

optimize the other objective. 
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