
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3605

IJRITCC | September 2023, Available @ http://www.ijritcc.org

IoT malware detection using a novel 3-Sigma

Auto-Funnel Transformer approach

Moushumi Barman
Department of Computer Science and Engineering

Assam Don Bosco University

Guwahati, Assam
moushumi77777@gmail.com

Bobby Sharma
Department of Computer Science and Engineering

Assam Don Bosco University

Guwahati, Assam
bobby.sharma@dbuniversity.ac.in

Abstract— The proliferation of Internet of Things (IoT) devices has ushered in a new era of connected technologies, but it has also brought
significant security challenges, particularly in the area of malware detection. This research paper presents a novel approach, the “3 Sigma Auto

Funnel Transformer,” that designed to address the specific complexities of malware detection in IoT devices. By leveraging advanced deep

learning techniques and a multi-layered architecture, the proposed framework provides an innovative solution to detect and mitigate malware

threats in IoT ecosystems. By combining the precision of the ”3 Sigma” approach with the efficiency of an ”Auto Funnel Transformer,” this
architecture achieves superior detection accuracy and performance. Through comprehensive evaluations, this paper demonstrates the

effectiveness of the proposed system in bolstering the security of IoT devices, thereby contributing to the ongoing efforts to protect these

essential components of our interconnected world.

Keywords-Autoencoder; Funnel Transformer; Deep Learning; Auto-Funnel; 3-Sigma limit

I. INTRODUCTION

The task of network intrusion detection holds immense
importance in the realm of modern cybersecurity as it endeavors
to safeguard computer networks from illicit entry and malicious
actions. In light of the growing intricacy and range of cyber
threats, conventional rule-based and signature-based intrusion
detection systems face noteworthy constraints when identifying
emerging or unknown attacks. To confront this formidable
challenge, scholars have begun exploring novel avenues that
harness cutting-edge machine learning techniques, notably deep
learning, with the aim of enhancing the efficacy of network
intrusion detection methods [1, 2].

This research paper presents an innovative proposition that
harmoniously blends the potency of funnel transformers and
autoencoders to enhance network intrusion detection. Funnel
transformers, distinguished for their sophisticated sequence
modelling structures, exhibit remarkable proficiency in
capturing prolonged dependencies and hierarchal patterns
inherent in sequential data [3]. Conversely, autoencoders, a
breed of unsupervised learning model, skillfully extract
compressed representations of input data by astutely
apprehending its fundamental traits. Their successful
implementation across multiple domains for feature extraction
and anomaly detection has been widely acknowledged [4].

The fusion of autoencoders and funnel transformers presents
a promising solution for enhancing the capabilities of Intrusion
Detection Systems (IDS) in identifying network intrusions. This
proposed methodology unfolds in two distinct phases. Initially,

the autoencoder model is employed to assimilate both
macroscopic and microscopic connections within network traffic
data, facilitating effective pattern recognition and detection of
anomalous behavior. Subsequently, the encoded attributes are
passed through the funnel transformer mechanism, allowing for
the acquisition of a compressed representation of the data. This
valuable process further enhances the IDS’s ability to detect
potential infringements on a network by capturing even more
subtle nuances inherent to malicious activities. In order to
determine the efficacy of the suggested methodology, a series of
extensive experiments have been conducted on a benchmark
dataset containing various network traffic scenarios as well as
instances of intrusion. To evaluate the detection capabilities of
the model, performance metrics including accuracy, precision,
recall, and F1 score have been utilized. Furthermore, a
comparative analysis has also been undertaken with established
intrusion detection techniques aiming to showcase the
superiority of the proposed approach.

The contributions of this research are as follows:

• Introducing a novel approach that combines
autoencoders and funnel transformers for network
intrusion detection, leveraging the strengths of both
models. Until now, the funnel transformer architecture
has primarily found in the field of Natural Language
Processing (NLP). However, this instance involves
utilizing the funnel transformer on a network, which
represents an innovative beyond its conventional use in
NLP.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3606

IJRITCC | September 2023, Available @ http://www.ijritcc.org

• Enhancing the detection capabilities of IDS by capturing
global and local dependencies in network traffic data
and learning compact representations of intrusions.

• Conducting comprehensive experiments on a
benchmark dataset to evaluate the effectiveness and
performance of the proposed approach.

• Performing comparative analysis with existing
techniques to demonstrate the superiority of the
proposed approach in terms of detection accuracy and
efficiency.

However, precision and accuracy serve as measures of how

well the work was done. Malware databases are actually skewed
in reality. As a result, different evaluation indications need to be
taken into account. For the suggested study, the benchmark
dataset IoT-23 was employed in this context. Metrics for
performance evaluation include the F1 score and recall. The
entire workflow is displayed in Figure 1.

Figure 1. Proposed Framework overview

The rest of the paper is organized as follows: Section II
provides an overview of related work in the field of network
intrusion detection, highlighting the application of deep learning
techniques. Section III presents “3-Sigma AutoFunnel
Transformer” in details. Section IV describes the experimental
setup, including the dataset, performance, and comparative
analysis. Section V presents the results and discussion of the
experiments. Finally, Section VI concludes the paper,
summarizes the contributions, and outlines potential avenues for
future research.

II. BACKGROUND

In paper [3], the advanced sequence modeling topologies
known as funnel transformers are introduced by the author. It
describes how the use of funnel transformers, which are
appropriate for network intrusion detection, allows them to
extract hierarchical patterns and long-range dependencies from
consecutive data.

In paper [5], the author offers two end-to-end deep learning-
based techniques for identifying Android malware. It is
proposed to feed raw byte-code from classes.dex files of
Android applications to deep learning models. The dataset
utilized to train and evaluate these models consist of 8,000
benign applications and 8,000 malicious applications. The
proposed approaches, according to experiments, may reach
detection accuracy of 93.4% and 95.8%, respectively.

Using the adopted strategy suggested in [6], the detecting
module is divided into two tiers and achieves an outstanding
accuracy of 98.29%. However, the principal impediment to this

undertaking is the significant processing power needed to
manage the two data layers. In paper [6], author employs a deep
learning model that combines an autoencoder network with a
grayscale picture representation of malware to discern between
dangerous and benign software. Based on the autoencoder’s
reconstruction error, the utility of the greyscale image approach
to malware is analyzed. The suggested detection model beat
some traditional machine learning methods with the data we
gathered on the Android side, achieving 96% accuracy and a
stable F1-score of roughly 96%.

The samples from two families were automatically retrieved
and described using their sequences, as stated in paper [3].
Word2Vec is used to convert the author’s statement sequences
to the word vector space. Next, a hierarchical language model
that takes advantage of the underlying hierarchical structure of
malware operations was developed based on a transformer
encoder in order to categorize the samples. The sample analyst
can determine the crucial feature with the aid of the correlation
results between the model’s weights and the sample’s features.
The author used IoT software samples from Mirai, Gafgyt, and
Benign to train our model. The author’s model surpassed
previous methods in this investigation, achieving a 99.12%
malware recognition rate and 94.67% classification accuracy.

The author presents DeepAMD, a novel defense approach
utilizing deep Artificial Neural Networks (ANNs), to combat
real-world Android malware. Through an efficiency comparison
with conventional machine learning classifiers and state-of-the-
art studies, DeepAMD exhibits superior performance in the
detection and identification of malware attacks on both Static
and Dynamic layers. Notably, on the Dynamic layer, DeepAMD
attains exceptional accuracy rates, achieving 80.3% accuracy for
malware category classification and 59% accuracy for malware
family classification, surpassing the capabilities of existing
techniques. These findings highlight the effectiveness and
promise of DeepAMD as a robust tool for countering Android
malware and its ability to enhance accuracy in both malware
categorization and family attribution [4].

Droidetec has an advanced method based on deep learning
that uses natural language sequences to effectively detect
malicious Android software and locate dangerous code. Its
groundbreaking feature extraction approach enables the
identification of behavioral sequences within Android
applications. To achieve this, Droidetec uses a bi-directional
Long Short Term Memory network to detect malware. By
creatively transforming each extracted behavioral unit into a
vector, Droidetec analyzes the semantics of the sequence
segments to ultimately expose malicious code. Extensive testing
on 11,982 benign programs and 9,616 malicious programs
demonstrates Droidetec’s exceptional performance with an
impressive F1 score of 98.21% and a hit rate of 97.22%. In terms
of overall effectiveness in accurately identifying malicious code
snippets, Droidetec can boast a success rate of 91% [7].

The author presents a novel approach to malware detection,
highlighting the limitations of traditional methods and the
increasing success of artificial intelligence-based techniques.
The proposed model combines grey-scale image representations
of malware with an autoencoder network in a deep learning
framework. It assesses the feasibility of using grey-scale images
to represent malware by analyzing the autoencoder’s
reconstruction error. Furthermore, the autoencoder’s
dimensionality reduction features are leveraged for classifying
malware versus benign software. The results show that the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3607

IJRITCC | September 2023, Available @ http://www.ijritcc.org

model achieves a remarkable accuracy of 96% and maintains a
stable F-score of around 96%, outperforming several traditional
machine learning detection algorithms when tested on an
Android-side dataset. This approach demonstrates the potential
of using deep learning and image representations for effective
malware detection [8].

A. Autoencoder

An autoencoder denotes a class of artificial neural networks
proficiently utilized for the purpose of unsupervised learning,
predominantly within the domain of profound learning. Its
fundamental objective is to acquire adept representations or
encodings of input data devoid of external guidance [9]. Figure
2 shows the architecture that encompasses two principal
constituents: an encoder and a decoder.

Figure 2. An architecture of Autoencoder

The role of the encoder is to convert the input data into a
condensed depiction within a space of lesser dimensions. This
process commonly involves layers that are concealed, with each
progressive layer having diminished dimensions. Essentially, it
is the encoder’s responsibility to condense and encapsulate
essential characteristics of the initial input.

In contrast, the decoder endeavors to retrieve and rebuild the
primary input data from its encoded representation. Contrary to
the workings of the encoder, this reconstruction entails
augmenting data dimensions through successive layers where
each subsequent layer possesses increased dimensions. The main
purpose of this operation for the decoder lies in producing an
output that faithfully resembles and approximates as closely as
possible to its original form [10].

The following is a representation of an autoencoder:
Encoding:
Assume that x is a vector of n-dimensional input data. To

create a hidden representation h, the encoder performs a series
of transformations represented by a set of weights as:

 h = f (W x + b) ()

where f is a rectified linear unit (ReLU) or sigmoid activation
function.

Decoding:
In order to recreate the original input data, the decoder

applies a new set of weights W' and biases b' to the hidden
representation h.

 R = g (W' h + b') ()

Where g is the activation function used for decoding, can be
used to represent this.

Loss function:
The disparity between the original input data x and the

reconstructed output data r is what the autoencoder attempts to
reduce. The mean squared error (MSE), which can be formulate
in the following manner:

 L (x, r) = ⃦ x – r ⃦ 2 ()

is a popular loss function used for this purpose.

B. Funnel Transformer

The funnel transformer model represents an architectural
variation of the renowned transformer model commonly
employed in natural language processing tasks. While
preserving competitive performance, this innovative design aims
to enhance computational efficiency and minimize memory
requirements. The essence of its efficacy lies in a progressively
narrowing structure, featuring layers that decrease in width. The
fundamental goal of the Funnel Transformer is to make the self-
attention mechanism for lengthy sequences less computationally
complex. The self-attention mechanism in a typical Transformer
has a complexity of O(n2), where n is the length of the input
sequence. Because of this, it is computationally costly for
extremely long sequences [11, 12].

The self-attention mechanism in the Funnel Transformer has
been changed to have a complexity of O(n), enabling it to handle
lengthy sequences more effectively. A number of downsampling
layers are used to do this, gradually shortening the sequence
length while lengthening the concealed dimensions. Figure 3
presents an idea of a funnel transformer [11, 13].

Figure 3. An architecture of Funnel Transformer

Input Sequence:
A sequence of tokens is used to represent the input sequence.

Every token is contained within a large-dimensional vector.
Encoding Layers:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3608

IJRITCC | September 2023, Available @ http://www.ijritcc.org

A number of encoding layers are applied to the input
sequence. A position-wise feed-forward network comes first,
then a multi-head self-attention mechanism, in each encoding
layer. Each token in the sequence is given the ability to pay
attention to the other tokens through the attention mechanism,
capturing the connections and dependencies between them. Each
token is subjected to non-linear changes individually by the feed-
forward networks. Let’s denote the input sequence as X = x_1,
x_2, ………., x_n, where n is the length of the sequence. The
Funnel Transformer can be mathematically represented as a
series of encoding and decoding layers.

For each encoding layer I, the multi-head self-attention
mechanism is defined as follows:

Attention (X) = Softmax ((Q * KT / sqrt (d_k)) * V, ()

where Q, K and V are the query, key and value matrices
obtained from X. The softmax operation computes the attention
weights and sqrt (d_k) is a scaling factor to stabilize the
gradients. The attention output is then passed through a feed-
forward network.

EncodingLayer_i(X) = LayerNorm (Attention (X) + X) +
FeedForward (Attention (X)), ()

where LayerNorm is a layer normalization operation and
FeedForward is a non-linear transformation.

Down-Sampling:
 To shorten the sequence, a down-sampling procedure is used

after each encoding layer. Utilizing strided convolutions, max-
pooling, or other methods can accomplish this process. The
downsampling collects high-level information from the input
sequence while assisting in the reduction of computational
complexity.

The down-sampling operation reduces the sequence length
by a factor of r. Let’s denote the down-sampled sequence as X',
with length n. The down-sampling can be expressed as:

 X' = DownSample (X) ()

where DownSample is a function that applies a specific
operation such as max-pooling or strided convolutions.

Increase in Hidden Dimension:
The tokens’ hidden dimensions are also enhanced in

conjunction with the downsampling. As a result, the model can
now describe the input sequence in a more abstract and
sophisticated manner.

The hidden dimensions of the tokens are increased along
with the down-sampling. Let’s denote the hidden dimension of
the encoding layer i as d_i. The hidden dimension increase can
be represented as:

 d_i = d_i – 1 * r ()

where d_i-1 is the hidden dimension of the previous
encoding layer.

Global Tokens:
A set of global tokens is chosen for each phase of the down-

sampling process. The sequence’s most instructive tokens are
these global tokens. They summarize the entire sequence and
capture the long-range dependencies.

 G = SelectGlobalTokens(X') ()

where SelectGlobalTokens is a function that chooses the
most informative tokens based on certain criteria.

Decoding Layers:
Following the downsampling procedures, a number of

decoding layers are applied to the global tokens and the
downsampled sequence. These layers function in the opposite
manner from the encoding layers but are comparable. The down-
sampled sequence and the global context are used by the
decoding layers to refine the representations. For each decoding
layer i, the decoding operation is similar to the encoding layer,
but operates in the reverse direction. The decoding layer can be
defined as:

DecodingLayer_i (X', G) = LayerNorm (Attention (X', G) +
X') + FeedForward (Attention (X', G))  ()

where Attention (X', G) computes the attention between X',
and G.

Output Prediction:
The output predictions are created by the last decoding layer.

These forecasts can be applied to a variety of projects, including
text classification, machine translation, and language modelling.
The final decoding layer produces the output predictions. This
can be represented as:

Output = OutputPrediction (DecodingLayer_i (X', G)) ()

where OutputPrediction is a function that produces the
desired output based on the refined representations.

III. PROPOSED METHODOLOGY

A. Data Preprocessing

The comprehensive data preprocessing and analysis pipeline
involves data loading, extraction, transformation, encoding,
correlation analysis, normalization, and splitting to prepare the
data to fit in the proposed model. Fig 4 depicts an overview of
data preprocessing model.

Raw IoT-23 Data: The process begins with the raw IoT-23
dataset, likely derived from Zeek log files. This dataset contains
various attributes and a “label” column representing the target
variable.

Load Files and Eliminate Conversion Column: To start
the data preprocessing, you load the dataset from a constructed
CSV file. During this process, it’s crucial to remove a specific
column generated during the conversion from Zeek log to CSV.
This column elimination simplifies the dataset for subsequent
analysis.

Data Extraction and Categorical Encoding: Following the
loading of data, you proceed to encode categorical variables
using the “category” data type. This encoding transforms
categorical data into numeric codes. It’s important to highlight
that this encoding step involves a function called
“ConvertStringToInt”, which converts string data to integers and
handles any missing data.

Label Distribution Analysis: A significant part of the
analysis involves examining the distribution of the “label”
column. You create a set of unique labels, denoted as “L” and
count the occurrences of each label. This analysis helps
understand the distribution of the target variable in the dataset.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3609

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Correlation Analysis and Feature Selection: To gain
insights into the relationships between variables, you compute a
correlation matrix for the dataset. Visualizing this matrix as a
heatmap provides a graphical representation of the correlations
between features. It’s worth noting that you decide to remove the
“local_orig” and “local_resp” columns, which are deemed
irrelevant for the heatmap analysis.

Data Preparation and Feature Selection: In this phase,
you extract both the input features, referred to as “X” and the
target variable, denoted as “Y” from the DataFrame. The target
variable is transformed into one-hot encoding, a common
technique for dealing with categorical labels. A specific subset
of columns, including “ts”, “uid”, and various network-related
attributes, is selected as input features (X), while the “label”
column is designated as the target variable (Y).

Data Normalization: Normalization is crucial to ensure that
all input features are on the same scale. The introduction of a
MinMaxScaler object and apply it to the input features (X) for
appropriate scaling. The same scaler is then used to fit and
transform the target variable (Y), bringing it into alignment with
the transformation applied to the features.

Data Splitting: Finally, the normalized data is divided into
two distinct sets: the training set and the testing set. To ensure
reproducibility, a fixed value is assigned to the random state
parameter. The size pf testing data and training data specifies
into 20 % and 80%, respectively. This division is essential for
training and evaluating machine learning models.

B. Proposed 3SAFT architecture

The study introduces a groundbreaking malware detection
architecture known as the “3 Sigma AutoFunnel Transformer”.
This architecture is novel and innovative in its approach to
identifying and mitigating malware threats. The “3 Sigma”
likely signifies a high level of precision, emphasizing the
model’s accuracy in detecting malicious software. The “Auto-
Funnel Transformer” suggests an automated and efficient
method for processing and analyzing data, resembling the
operations of a funnel that narrows down and processes

information effectively. Together, this architecture leverages
advanced techniques, potentially including deep learning, to
enhance the security and reliability of malware detection,
making it a significant advancement in the field of cybersecurity.
The details of proposed architecture implementation are
highlighted in Figure 5. The performance of the proposed
architecture is compared with the existing models, as shown in
Figure 6. Figure 7 presents a “3SAFT” flow chart. Figure 8
describes the mechanism of Auto Funnel Transformer.

 Figure 5. An architecture of Funnel Transformer

 Figure 6. An architecture of Funnel Transformer

Figure 7. 3 Sigma Auto-Funnel Transform flow chart

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3610

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 8. Mechanism of Auto funnel Transformer

C. 3 Sigma Auto-Funnel Transformer

The fusion of an autoencoder with a funnel transformer
yields a robust architecture suitable for IoT devices. This model
adeptly leverages the autoencoder’s ability to acquire efficient
representations and the computational efficiency inherent in a
funnel transformer. In the ensuing discourse, we will delve into
the elucidation of the proposed model, emphasizing its
advantageous attributes by integrating the previously mentioned
mathematical expressions into our analysis.

The autoencoder’s role is encoding efficient representations
of input data through its encoder-decoder structure, as previously
explained. In contrast, the funnel transformer was intentionally
designed to reduce computational complexity and memory
requirements while maintaining competitive performance. This
component features an architectural configuration resembling a
funnel, characterized by a decrease in attention heads and an
increase in hidden layer sizes.

Considering this, the proposed integrated model combines
both the autoencoder and funnel transformer components to
leverage their individual strengths. Specifically, the autoencoder
acts as an initial training stage for assimilating semantically
meaningful representations. Subsequently, the funnel
transformer employs these acquired representations for further
processing and predictive tasks.

In Autoencoder Encoder, the input data, denoted as ‘x’ is
mapped into a lower dimensional latent space representation ‘h’
using the following equation:

 h = f (W_e * x + b_e) ()

here, ‘f’ represents the activation, while ‘W_e’ and ‘b_e’ are
the weight matrix and bias of the encoder, respectively.

In Autoencoder Decoder, the decoder component of the
autoencoder takes the latent representation ‘h ’and endeavors to
reconstruct the original input data ‘x’ with the following
equation.

 r = g (W_d * h + b_d) ()

The activation function ‘g ’is applied here, and ‘W_d’ and
‘b_ d ’denotes the weight matrix and bias of the decoder.

Funnel Transformer is the part of the model takes the
encoded representation ‘h’ from the autoencoder and processes
it using a funnel-shaped architecture, characterized by
decreasing attention heads and increasing hidden layer sizes. The
self-attention and feed-forward network in each layer adhere to
the previously discussed mathematical expressions.

The 3 Sigma (3σ) limit in malware detection uses statistical
methods to define a threshold for discerning normal system
behavior from potentially malicious activities. Deviations
beyond this limit trigger alerts, indicating possible malware
actions. This approach offers continuous, quantitative
monitoring of system behavior, enabling proactive detection and
response to anomalies, as a consequence strengthening
cybersecurity defenses against threats.

Hybrid Model: In this process, a unified model is created by
combining a funnel transformer and an autoencoder. Initially, a
funnel transformer model is instantiated, defining the expected
input dimension. Similarly, an autoencoder model is created
with the same input dimension. The input data is then passed
through the autoencoder, resulting in an encoded representation.
A combined input layer is introduced to accept inputs from both
models, leveraging the specified input dimension. Finally, the
encoded output from the autoencoder is processed by the funnel
transformer to produce the ultimate combined output. The entire
architecture is encapsulated in a combined model, offering a
holistic approach that first encodes input data and then employs
the funnel transformer for further processing, ultimately
generating the model’s final output observed in algorithm 2.
Algorithm 3 describes the addressing malware issues in IoT
devices using 3 Sigma limit. The following equations depict the
combined model of funnel transformer and autoencoder. Fig 9
depicts a representation of a hybrid proposed model.

 inputs = combined_input (shape = (input_dim,)) ()

 encoded_output = autoencoder (combined_input) ()

 combined_output = funnel_transformer(encoded_input) ()

 combined_model = Model (inputs = combined_inputs,
outputs = combined_output) ()

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3611

IJRITCC | September 2023, Available @ http://www.ijritcc.org

IV. EXPERIMENTAL SETUP

The IoT-23 dataset encompasses network traffic data from a
variety of Internet of Things (IoT) devices, consisting of 23
instances. Among these, three instances contain benign traffic
data, while 20 instances are associated with malicious software
activities. This dataset was initially made public in January 2020,
and it covers the period from 2018 to 2019, with monitoring
conducted by the Stratosphere Lab at the AIC Group within
FEL, CTU University in the Czech Republic. A crucial
component of this dataset is the conn.log. labeled files generated
using Zeek’s network analysis, providing detailed insights and
unique attributes for each entry. The dataset also includes the
primary source data files known as pcap files, with a total of
325,307,990 observations. Notably, the majority of these
records, specifically 294,449,255, pertain to malicious activities.
In this context, N represents the total number of records in the
collection, which is 1,444,674, and each record, denoted as ‘x’
is a vector representation composed of various attributes.

A. Key Performance Indicators

In the field of deep learning and artificial intelligence,
performance metrics are used to assess the quality and
effectiveness of machine learning models. These metrics help in
understanding how well a model is performing on a particular
task, such as classification, regression, or object detection. Some
common performance metrics in deep learning include:

Accuracy: Accuracy measures the overall correctness of
predictions and is computed as the ratio of correctly classified
instances to the total number of instances.

 Accuracy = (TP + TN) / (TP + TN + FP + FN) ()

where, TP = True Positives (Malware correctly identified).
TN = True Negatives (Non-malware correctly identified).
FP = False Positives (Non-malware incorrectly classified as
malware).

FN = False Negatives (Malware incorrectly classified as non-
malware).

Precision: Precision quantifies the model’s ability to
minimize false positives, i.e., it measures the proportion of
correctly identified malware out of all positive predictions.

 Precision = TP / (TP + FP)  ()

 Recall: Recall assesses the model’s ability to minimize false
negatives, i.e., it measures the proportion of correctly identified
malware out of all actual malware instances.

 Recall = TP / (TP + FN). ()

F1-Score: F1 Score is the harmonic mean of precision and
recall, providing a balanced evaluation that considers both false
positives and false negatives.

F1-Score = 2 * ((Precision * Recall) / (Precision +
Recall)). ()

V. RESULTS AND ANALYSIS

 Performance analysis of 3SAFT: The data for the

“3SAFT” method demonstrates an exceptional level of
performance across multiple metrics. First, the training and
validation loss indicate that the model exhibits efficient learning
during training while avoiding overfitting on the validation set.
Additionally, the high training and validation accuracy figures
highlight that the model performs remarkably well not only on
the training data but also on unseen validation data. The model’s
high accuracy of 99.73% suggests that it correctly classifies an
overwhelming majority of the data points in both training and
validation dataset. The precision score of 99.46% is equally
impressive, indicating that when the model predicts a positive
outcome, it is highly accurate with very few false positives. The
recall rate of 99.73% underlines the model’s ability to capture
almost all actual positive cases, making it highly sensitive.
Moreover, the F1-Score, which is very close to the accuracy at
99.59%, signifies a harmonious balance between precision and
recall. In conclusion, “3SAFT” excels across all key metrics,
making it an ideal choice for tasks where both precision and
recall are paramount, with its robust performance seen in both
the training and validation phases. This suggests a well-
generalized model with a strong ability to classify and identify
positive cases accurately.

The malware detection model’s training accuracy and
validation accuracy are shown in Figure 10. The percentage of
samples that were properly identified during the training phase
is measured by training accuracy, whereas the percentage is
measured by validation accuracy using a different validation
dataset. Figure 11 y-axis displays accuracy values, which range
from 0 to 1, with 1 denoting perfect accuracy. Higher accuracy
scores show that the model’s predictions and actual labels are
closely correlated, which reflects a better comprehension and
representation of the data. The training epochs or iterations are
represented on the x-axis, which shows how far along the
training process is. The model is performing at a very high level
overall, with a low rate of false positives and false negatives,
according to these evaluation measures. The model appears to be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3612

IJRITCC | September 2023, Available @ http://www.ijritcc.org

successful in its classification task and can be regarded as
reliable for the provided dataset based on the high precision,
recall, F1 score, and accuracy values.

Figure 10. Training and validation accuracy

Figure 11. Training and validation loss

Performance analysis with existing work: In Table 1, a
performance analysis is presented for the proposed work
alongside existing work. The analysis includes two key metrics:
validation loss and training loss. The validation loss measures
the difference between model predictions and actual data on a
separate validation dataset, while the training loss indicates the
disparity between the model’s predicted outputs and the actual
ground truth labels during the training process. These loss values
serve as numerical indicators of the model’s effectiveness and
are plotted on the y-axis in the accompanying figure. Lower loss
values signify a better fit to the data, indicating that the model’s
predictions closely align with the ground truth labels. The x-axis
represents the training epochs or iterations, illustrating the
progression of the training procedure. This analysis provides a
comparison of the proposed and existing approaches based on
their loss values and training progress. Figure 13, Figure 14, Fig
15 and Figure 16 depicts a graphical representation of data
mention in table 1.

TABLE I. PERFORMANCE COMPARISON OF PROPOSED WORK ALONG

WITH EXISTING WORK

Methods Accuracy Precision Recall F1-Score

DexCNN BiGRU [9] 95.80 % 95.40 % 96.20 % 95.80 %

LSTM-VAE [7] 97.29% 94.63 % 96.07 % 95.34 %

CNN-o [11] 94.60 % 94.96 % 94.10 % 94.53 %

DeepAMD [4] 80.30 % 82.20 % 80.30 % 80.50 %

Methods Accuracy Precision Recall F1-Score

Droidetec [8] 97.22 % 98.21 % 98.35 % 98.20 %

3-SAFT (Proposed

Approach)
99.73 % 99.46 % 99.73 % 99.59 %

In Figure 12, a visual depiction of the discovered anomalies

or probable malware instances is provided via the plotted
reconstruction errors and the labelled anomalies. Understanding
the prevalence and severity of the reconstruction mistakes across
the dataset is made easier by the figure. The probable malware
cases are indicated by the red scatter spots that emphasize the
areas where the reconstruction mistakes are greater than the
threshold. Overall, based on the metrics for evaluation and the
visualization, it appears that the malware detection system that
uses a combination model and reconstruction error to identify
malware samples is quite accurate and efficient.

Figure 12. Addressing Malware

Figure 13. Accuracy

Figure 14. Precision

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3613

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 15. Recall

Figure 16. F1-Score

VI. CONCLUSION

In conclusion, the autoencoder and Funnel Transformer
model combined has a lot of potential for solving the malware
problem in IoT devices. This methodology effectively detects
and mitigates malicious software threats in IoT environments by
combining the advantages of both architectures. In order to
detect aberrant patterns that can point to the existence of
malware, the autoencoder component of the model facilitates the
learning of meaningful representations of IoT device data. The
autoencoder detects key characteristics and patterns that may be
suggestive of malicious behavior by compressing the input data
into a lower-dimensional latent space and then recreating it. The
Funnel Transformer component improves the model’s capacity
to examine and categorize data from IoT devices. Its hierarchical
structure effectively processes the sequential nature of IoT data
and identifies complicated malware patterns by capturing both
local and global dependencies.

Overall, the Autoencoder and Funnel Transformer model
combined gives a viable solution to the problem of malware
detection in IoT devices. It offers a strong and effective method
for spotting dangerous patterns in IoT data by combining the
strengths of both designs, thereby strengthening the security and
integrity of IoT ecosystems. Through a diligent concentration on
these forthcoming avenues of research, scholars have the
opportunity to propel the amalgamated autoencoder and Funnel
Transformer model towards confronting malware in IoT devices.
These endeavors possess the potential to augment the model’s
efficacy, expand its capacity for growth, elucidate its

interpretability, and notably bolster its practicality within real-
world scenarios. Consequently, such endeavors will fortify the
security and steadfastness of IoT ecosystems against incessantly
transforming malware perils.

ACKNOWLEDGMENT

The authors would like to thank Department of Computer
Science and Engineering, Assam Don Bosco University for all
the support.

REFERENCES

[1] M. K. Asif, T. A. Khan, T. A. Taj, U. Naeem and S. Yakoob,
“Network Intrusion Detection and its strategic importance,”
2013 IEEE Business Engineering and Industrial Applications
Colloquium (BEIAC), Langkawi, Malaysia, 2013, pp. 140-
144, doi: 10.1109/BEIAC.2013.6560100.

[2] Z. Dai, G. Lai, Y. Yang, Y., and Q.V. Le,“Funnel-
Transformer: Filtering out Sequential Redundancy for
Efficient Language Processing,”arXiv e-prints, 2020.
doi:10.48550/arXiv.2006.03236.

[3] X. Hu, R. Sun, K. Xu, Y. Zhang and P. Chang, "Exploit
Internal Structural Information for IoT Malware Detection
Based on Hierarchical Transformer Model," 2020 IEEE 19th
International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Guangzhou,
China, 2020, pp. 927-934, doi:
10.1109/TrustCom50675.2020.00124.

[4] S. I. Imtiaz, S. Rehman, A.R. Javed, Z. Jalil, X. Liu and W.S.
Alnumay, “ Deep-AMD: Detection and identification of
Android malware using high-efficient Deep Artificial Neural
Network,” Future Generation computer systems, Elsevier,
vol. 115, 2021, pp. 844-856,
https://doi.org/10.1016/j.future.2020.10.008.

[5] Y. LeCun, Y. Bengio and G. Hinton, “ Deep learning,”
nature, vol. 521, 2015, pp. 436-444,
https://doi.org/10.1038/nature14539.

[6] T. Lin, Y. Wang, X. Liu and X. Qiu, “ A survey of
transformers,” AI Open, Elsevier, vol. 3, 2022, pp. 111-132,
https://doi.org/10.1016/j.aiopen.2022.10.001.

[7] M. Liu, S. Wei and P. Jiang, “ A hybrid modeling of mobile
app dynamics on serial causality for malware detection”,
Security and Communication Networks, vol. 2021, 2021, pp.
1-10, https://doi.org/10.1155/2021/9994588.

[8] Z. Ma, H. Ge, Z. Wang, Y. Liu and X. Liu, “Droidetec:
Android malware detection and malicious code localization
through deep learning,” arXiv preprint arXiv:2002.03594,
2020,
https://ui.adsabs.harvard.edu/link_gateway/2020arXiv20020
3594M/doi:10.48550/arXiv.2002.03594

[9] Z. Ren, H. Wu, Q. Ning, I. Hussain and B. Chen, “End-to-
end malware detection for android IoT devices using deep
learning,” Ad Hoc Networks, Elsevier, vol. 101, Feb. 2020,
pp. 102098, https://doi.org/10.1016/j.adhoc.2020.102098.

[10] Y. Tay, D. Bahri, D. Matzler, D.C. Juan, Z. Zhao and C.
Zheng, “Synthesizer: Rethinking self-attention for
transformer models,” in International conference on machine
learning, PMLR, 2021, pp. 10183-10192.

[11] X. Xing, X. Jin, H. Elahi, H. Jiang and G. Wang, "A Malware
Detection Approach Using Autoencoder in Deep Learning,"
in IEEE Access, vol. 10, pp. 25696-25706, 2022, doi:
10.1109/ACCESS.2022.3155695.

[12] J. Zhai, S. Zhang, J. Chen and Q. He, "Autoencoder and Its
Various Variants," 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Miyazaki, Japan,
2018, pp. 415-419, doi: 10.1109/SMC.2018.00080.

[13] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D.
Cho, and H. Chen, “Deep autoencoding gaussian mixture
model for unsupervised anomaly detection.,” in International
conference on learning representations, 2018.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3614

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 4. A brief overview on data preprocessing

Figure 9. Proposed hybrid model

http://www.ijritcc.org/

