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Abstract— The proliferation of Internet of Things (IoT) devices has ushered in a new era of connected technologies, but it has also brought 
significant security challenges, particularly in the area of malware detection. This research paper presents a novel approach, the “3 Sigma Auto 

Funnel Transformer,” that designed to address the specific complexities of malware detection in IoT devices. By leveraging advanced deep 

learning techniques and a multi-layered architecture, the proposed framework provides an innovative solution to detect and mitigate malware 

threats in IoT ecosystems. By combining the precision of the ”3 Sigma” approach with the efficiency of an ”Auto Funnel Transformer,” this 
architecture achieves superior detection accuracy and performance. Through comprehensive evaluations, this paper demonstrates the 

effectiveness of the proposed system in bolstering the security of IoT devices, thereby contributing to the ongoing efforts to protect these 

essential components of our interconnected world. 
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I.  INTRODUCTION  

The task of network intrusion detection holds immense 
importance in the realm of modern cybersecurity as it endeavors 
to safeguard computer networks from illicit entry and malicious 
actions. In light of the growing intricacy and range of cyber 
threats, conventional rule-based and signature-based intrusion 
detection systems face noteworthy constraints when identifying 
emerging or unknown attacks. To confront this formidable 
challenge, scholars have begun exploring novel avenues that 
harness cutting-edge machine learning techniques, notably deep 
learning, with the aim of enhancing the efficacy of network 
intrusion detection methods [1, 2]. 

This research paper presents an innovative proposition that 
harmoniously blends the potency of funnel transformers and 
autoencoders to enhance network intrusion detection. Funnel 
transformers, distinguished for their sophisticated sequence 
modelling structures, exhibit remarkable proficiency in 
capturing prolonged dependencies and hierarchal patterns 
inherent in sequential data [3]. Conversely, autoencoders, a 
breed of unsupervised learning model, skillfully extract 
compressed representations of input data by astutely 
apprehending its fundamental traits. Their successful 
implementation across multiple domains for feature extraction 
and anomaly detection has been widely acknowledged [4]. 

The fusion of autoencoders and funnel transformers presents 
a promising solution for enhancing the capabilities of Intrusion 
Detection Systems (IDS) in identifying network intrusions. This 
proposed methodology unfolds in two distinct phases. Initially, 

the autoencoder model is employed to assimilate both 
macroscopic and microscopic connections within network traffic 
data, facilitating effective pattern recognition and detection of 
anomalous behavior. Subsequently, the encoded attributes are 
passed through the funnel transformer mechanism, allowing for 
the acquisition of a compressed representation of the data. This 
valuable process further enhances the IDS’s ability to detect 
potential infringements on a network by capturing even more 
subtle nuances inherent to malicious activities. In order to 
determine the efficacy of the suggested methodology, a series of 
extensive experiments have been conducted on a benchmark 
dataset containing various network traffic scenarios as well as 
instances of intrusion. To evaluate the detection capabilities of 
the model, performance metrics including accuracy, precision, 
recall, and F1 score have been utilized. Furthermore, a 
comparative analysis has also been undertaken with established 
intrusion detection techniques aiming to showcase the 
superiority of the proposed approach. 

The contributions of this research are as follows: 

• Introducing a novel approach that combines 
autoencoders and funnel transformers for network 
intrusion detection, leveraging the strengths of both 
models. Until now, the funnel transformer architecture 
has primarily found in the field of Natural Language 
Processing (NLP). However, this instance involves 
utilizing the funnel transformer on a network, which 
represents an innovative beyond its conventional use in 
NLP. 
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• Enhancing the detection capabilities of IDS by capturing 
global and local dependencies in network traffic data 
and learning compact representations of intrusions. 

• Conducting comprehensive experiments on a 
benchmark dataset to evaluate the effectiveness and 
performance of the proposed approach. 

• Performing comparative analysis with existing 
techniques to demonstrate the superiority of the 
proposed approach in terms of detection accuracy and 
efficiency. 

 
However, precision and accuracy serve as measures of how 

well the work was done. Malware databases are actually skewed 
in reality. As a result, different evaluation indications need to be 
taken into account. For the suggested study, the benchmark 
dataset IoT-23 was employed in this context. Metrics for 
performance evaluation include the F1 score and recall. The 
entire workflow is displayed in Figure 1. 
 

 
 

Figure 1.  Proposed Framework overview 

The rest of the paper is organized as follows: Section II 
provides an overview of related work in the field of network 
intrusion detection, highlighting the application of deep learning 
techniques. Section III presents “3-Sigma AutoFunnel 
Transformer” in details. Section IV describes the experimental 
setup, including the dataset, performance, and comparative 
analysis. Section V presents the results and discussion of the 
experiments. Finally, Section VI concludes the paper, 
summarizes the contributions, and outlines potential avenues for 
future research. 

 

II. BACKGROUND 

In paper [3], the advanced sequence modeling topologies 
known as funnel transformers are introduced by the author. It 
describes how the use of funnel transformers, which are 
appropriate for network intrusion detection, allows them to 
extract hierarchical patterns and long-range dependencies from 
consecutive data. 

In paper [5], the author offers two end-to-end deep learning-
based techniques for identifying Android malware. It is 
proposed to feed raw byte-code from classes.dex files of 
Android applications to deep learning models. The dataset 
utilized to train and evaluate these models consist of 8,000 
benign applications and 8,000 malicious applications. The 
proposed approaches, according to experiments, may reach 
detection accuracy of 93.4% and 95.8%, respectively. 

Using the adopted strategy suggested in [6], the detecting 
module is divided into two tiers and achieves an outstanding 
accuracy of 98.29%. However, the principal impediment to this 

undertaking is the significant processing power needed to 
manage the two data layers. In paper [6], author employs a deep 
learning model that combines an autoencoder network with a 
grayscale picture representation of malware to discern between 
dangerous and benign software. Based on the autoencoder’s 
reconstruction error, the utility of the greyscale image approach 
to malware is analyzed. The suggested detection model beat 
some traditional machine learning methods with the data we 
gathered on the Android side, achieving 96% accuracy and a 
stable F1-score of roughly 96%. 

The samples from two families were automatically retrieved 
and described using their sequences, as stated in paper [3]. 
Word2Vec is used to convert the author’s statement sequences 
to the word vector space. Next, a hierarchical language model 
that takes advantage of the underlying hierarchical structure of 
malware operations was developed based on a transformer 
encoder in order to categorize the samples. The sample analyst 
can determine the crucial feature with the aid of the correlation 
results between the model’s weights and the sample’s features. 
The author used IoT software samples from Mirai, Gafgyt, and 
Benign to train our model. The author’s model surpassed 
previous methods in this investigation, achieving a 99.12% 
malware recognition rate and 94.67% classification accuracy. 

The author presents DeepAMD, a novel defense approach 
utilizing deep Artificial Neural Networks (ANNs), to combat 
real-world Android malware. Through an efficiency comparison 
with conventional machine learning classifiers and state-of-the-
art studies, DeepAMD exhibits superior performance in the 
detection and identification of malware attacks on both Static 
and Dynamic layers. Notably, on the Dynamic layer, DeepAMD 
attains exceptional accuracy rates, achieving 80.3% accuracy for 
malware category classification and 59% accuracy for malware 
family classification, surpassing the capabilities of existing 
techniques. These findings highlight the effectiveness and 
promise of DeepAMD as a robust tool for countering Android 
malware and its ability to enhance accuracy in both malware 
categorization and family attribution [4]. 

Droidetec has an advanced method based on deep learning 
that uses natural language sequences to effectively detect 
malicious Android software and locate dangerous code. Its 
groundbreaking feature extraction approach enables the 
identification of behavioral sequences within Android 
applications. To achieve this, Droidetec uses a bi-directional 
Long Short Term Memory network to detect malware. By 
creatively transforming each extracted behavioral unit into a 
vector, Droidetec analyzes the semantics of the sequence 
segments to ultimately expose malicious code. Extensive testing 
on 11,982 benign programs and 9,616 malicious programs 
demonstrates Droidetec’s exceptional performance with an 
impressive F1 score of 98.21% and a hit rate of 97.22%. In terms 
of overall effectiveness in accurately identifying malicious code 
snippets, Droidetec can boast a success rate of 91% [7]. 

The author presents a novel approach to malware detection, 
highlighting the limitations of traditional methods and the 
increasing success of artificial intelligence-based techniques. 
The proposed model combines grey-scale image representations 
of malware with an autoencoder network in a deep learning 
framework. It assesses the feasibility of using grey-scale images 
to represent malware by analyzing the autoencoder’s 
reconstruction error. Furthermore, the autoencoder’s 
dimensionality reduction features are leveraged for classifying 
malware versus benign software. The results show that the 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 
 

 

    3607 

IJRITCC | September 2023, Available @ http://www.ijritcc.org 

model achieves a remarkable accuracy of 96% and maintains a 
stable F-score of around 96%, outperforming several traditional 
machine learning detection algorithms when tested on an 
Android-side dataset. This approach demonstrates the potential 
of using deep learning and image representations for effective 
malware detection [8]. 

A. Autoencoder 

An autoencoder denotes a class of artificial neural networks 
proficiently utilized for the purpose of unsupervised learning, 
predominantly within the domain of profound learning. Its 
fundamental objective is to acquire adept representations or 
encodings of input data devoid of external guidance [9]. Figure 
2 shows the architecture that encompasses two principal 
constituents: an encoder and a decoder. 
 

 

Figure 2.  An architecture of Autoencoder 

The role of the encoder is to convert the input data into a 
condensed depiction within a space of lesser dimensions. This 
process commonly involves layers that are concealed, with each 
progressive layer having diminished dimensions. Essentially, it 
is the encoder’s responsibility to condense and encapsulate 
essential characteristics of the initial input. 

In contrast, the decoder endeavors to retrieve and rebuild the 
primary input data from its encoded representation. Contrary to 
the workings of the encoder, this reconstruction entails 
augmenting data dimensions through successive layers where 
each subsequent layer possesses increased dimensions. The main 
purpose of this operation for the decoder lies in producing an 
output that faithfully resembles and approximates as closely as 
possible to its original form [10]. 

The following is a representation of an autoencoder: 
Encoding: 
Assume that x is a vector of n-dimensional input data. To 

create a hidden representation h, the encoder performs a series 
of transformations represented by a set of weights as: 

                                    h = f (W x + b) () 

where f is a rectified linear unit (ReLU) or sigmoid activation 
function. 

Decoding: 
In order to recreate the original input data, the decoder 

applies a new set of weights W' and biases b' to the hidden 
representation h. 

                                   R = g (W' h + b') () 

Where g is the activation function used for decoding, can be 
used to represent this. 

Loss function: 
The disparity between the original input data x and the 

reconstructed output data r is what the autoencoder attempts to 
reduce. The mean squared error (MSE), which can be formulate 
in the following manner: 

                                   L (x, r) =  ⃦ x – r   ⃦ 2 () 

is a popular loss function used for this purpose. 
 

B. Funnel Transformer 

The funnel transformer model represents an architectural 
variation of the renowned transformer model commonly 
employed in natural language processing tasks. While 
preserving competitive performance, this innovative design aims 
to enhance computational efficiency and minimize memory 
requirements. The essence of its efficacy lies in a progressively 
narrowing structure, featuring layers that decrease in width. The 
fundamental goal of the Funnel Transformer is to make the self-
attention mechanism for lengthy sequences less computationally 
complex. The self-attention mechanism in a typical Transformer 
has a complexity of O(n2), where n is the length of the input 
sequence. Because of this, it is computationally costly for 
extremely long sequences [11, 12]. 

The self-attention mechanism in the Funnel Transformer has 
been changed to have a complexity of O(n), enabling it to handle 
lengthy sequences more effectively. A number of downsampling 
layers are used to do this, gradually shortening the sequence 
length while lengthening the concealed dimensions. Figure 3 
presents an idea of a funnel transformer [11, 13]. 
 

 

Figure 3.  An architecture of Funnel Transformer 

Input Sequence: 
A sequence of tokens is used to represent the input sequence. 

Every token is contained within a large-dimensional vector. 
Encoding Layers: 
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A number of encoding layers are applied to the input 
sequence. A position-wise feed-forward network comes first, 
then a multi-head self-attention mechanism, in each encoding 
layer. Each token in the sequence is given the ability to pay 
attention to the other tokens through the attention mechanism, 
capturing the connections and dependencies between them. Each 
token is subjected to non-linear changes individually by the feed-
forward networks. Let’s denote the input sequence as X = x_1, 
x_2, ………., x_n, where n is the length of the sequence. The 
Funnel Transformer can be mathematically represented as a 
series of encoding and decoding layers. 

For each encoding layer I, the multi-head self-attention 
mechanism is defined as follows: 

Attention (X) = Softmax ((Q * KT / sqrt (d_k)) * V, () 

where Q, K and V are the query, key and value matrices 
obtained from X. The softmax operation computes the attention 
weights and sqrt (d_k) is a scaling factor to stabilize the 
gradients. The attention output is then passed through a feed-
forward network. 

EncodingLayer_i(X) = LayerNorm (Attention (X) + X) +                                                                                       
FeedForward (Attention (X)),                                                () 

where LayerNorm is a layer normalization operation and 
FeedForward is a non-linear transformation. 

Down-Sampling: 
 To shorten the sequence, a down-sampling procedure is used 

after each encoding layer. Utilizing strided convolutions, max-
pooling, or other methods can accomplish this process. The 
downsampling collects high-level information from the input 
sequence while assisting in the reduction of computational 
complexity.  

The down-sampling operation reduces the sequence length 
by a factor of r. Let’s denote the down-sampled sequence as X', 
with length n. The down-sampling can be expressed as: 

                                X' = DownSample (X) () 

where DownSample is a function that applies a specific 
operation such as max-pooling or strided convolutions. 

Increase in Hidden Dimension: 
The tokens’ hidden dimensions are also enhanced in 

conjunction with the downsampling. As a result, the model can 
now describe the input sequence in a more abstract and 
sophisticated manner. 

The hidden dimensions of the tokens are increased along 
with the down-sampling. Let’s denote the hidden dimension of 
the encoding layer i as d_i. The hidden dimension increase can 
be represented as: 

                                   d_i = d_i – 1 * r () 

where d_i-1 is the hidden dimension of the previous 
encoding layer. 

Global Tokens: 
A set of global tokens is chosen for each phase of the down-

sampling process. The sequence’s most instructive tokens are 
these global tokens. They summarize the entire sequence and 
capture the long-range dependencies. 

                             G = SelectGlobalTokens(X')  () 

where SelectGlobalTokens is a function that chooses the 
most informative tokens based on certain criteria.  

Decoding Layers: 
Following the downsampling procedures, a number of 

decoding layers are applied to the global tokens and the 
downsampled sequence. These layers function in the opposite 
manner from the encoding layers but are comparable. The down-
sampled sequence and the global context are used by the 
decoding layers to refine the representations. For each decoding 
layer i, the decoding operation is similar to the encoding layer, 
but operates in the reverse direction. The decoding layer can be 
defined as: 

DecodingLayer_i (X', G) = LayerNorm (Attention (X', G) + 
X') + FeedForward (Attention (X', G))  () 

where Attention (X', G) computes the attention between X', 
and G. 

Output Prediction: 
The output predictions are created by the last decoding layer. 

These forecasts can be applied to a variety of projects, including 
text classification, machine translation, and language modelling. 
The final decoding layer produces the output predictions. This 
can be represented as:   

Output = OutputPrediction (DecodingLayer_i (X', G)) () 

where OutputPrediction is a function that produces the 
desired output based on the refined representations. 

III. PROPOSED METHODOLOGY 

A. Data Preprocessing 

The comprehensive data preprocessing and analysis pipeline 
involves data loading, extraction, transformation, encoding, 
correlation analysis, normalization, and splitting to prepare the 
data to fit in the proposed model. Fig 4 depicts an overview of 
data preprocessing model. 

Raw IoT-23 Data: The process begins with the raw IoT-23 
dataset, likely derived from Zeek log files. This dataset contains 
various attributes and a “label” column representing the target 
variable. 

Load Files and Eliminate Conversion Column: To start 
the data preprocessing, you load the dataset from a constructed 
CSV file. During this process, it’s crucial to remove a specific 
column generated during the conversion from Zeek log to CSV. 
This column elimination simplifies the dataset for subsequent 
analysis. 

Data Extraction and Categorical Encoding: Following the 
loading of data, you proceed to encode categorical variables 
using the “category” data type. This encoding transforms 
categorical data into numeric codes. It’s important to highlight 
that this encoding step involves a function called 
“ConvertStringToInt”, which converts string data to integers and 
handles any missing data. 

Label Distribution Analysis: A significant part of the 
analysis involves examining the distribution of the “label” 
column. You create a set of unique labels, denoted as “L” and 
count the occurrences of each label. This analysis helps 
understand the distribution of the target variable in the dataset. 
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Correlation Analysis and Feature Selection: To gain 
insights into the relationships between variables, you compute a 
correlation matrix for the dataset. Visualizing this matrix as a 
heatmap provides a graphical representation of the correlations 
between features. It’s worth noting that you decide to remove the 
“local_orig” and “local_resp” columns, which are deemed 
irrelevant for the heatmap analysis. 

Data Preparation and Feature Selection: In this phase, 
you extract both the input features, referred to as “X” and the 
target variable, denoted as “Y” from the DataFrame. The target 
variable is transformed into one-hot encoding, a common 
technique for dealing with categorical labels. A specific subset 
of columns, including “ts”, “uid”, and various network-related 
attributes, is selected as input features (X), while the “label” 
column is designated as the target variable (Y). 

Data Normalization: Normalization is crucial to ensure that 
all input features are on the same scale. The introduction of a 
MinMaxScaler object and apply it to the input features (X) for 
appropriate scaling. The same scaler is then used to fit and 
transform the target variable (Y), bringing it into alignment with 
the transformation applied to the features. 

Data Splitting: Finally, the normalized data is divided into 
two distinct sets: the training set and the testing set. To ensure 
reproducibility, a fixed value is assigned to the random state 
parameter. The size pf testing data and training data specifies 
into 20 % and 80%, respectively. This division is essential for 
training and evaluating machine learning models. 
 

 

B. Proposed 3SAFT architecture 

The study introduces a groundbreaking malware detection 
architecture known as the “3 Sigma AutoFunnel Transformer”. 
This architecture is novel and innovative in its approach to 
identifying and mitigating malware threats. The “3 Sigma” 
likely signifies a high level of precision, emphasizing the 
model’s accuracy in detecting malicious software. The “Auto-
Funnel Transformer” suggests an automated and efficient 
method for processing and analyzing data, resembling the 
operations of a funnel that narrows down and processes 

information effectively. Together, this architecture leverages 
advanced techniques, potentially including deep learning, to 
enhance the security and reliability of malware detection, 
making it a significant advancement in the field of cybersecurity. 
The details of proposed architecture implementation are 
highlighted in Figure 5. The performance of the proposed 
architecture is compared with the existing models, as shown in 
Figure 6. Figure 7 presents a “3SAFT” flow chart. Figure 8 
describes the mechanism of Auto Funnel Transformer. 

 

 

                          Figure 5.     An architecture of Funnel Transformer 

 

                          Figure 6.     An architecture of Funnel Transformer 

 

Figure 7.     3 Sigma Auto-Funnel Transform flow chart 
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Figure 8.     Mechanism of Auto funnel Transformer 

C. 3 Sigma Auto-Funnel Transformer 

The fusion of an autoencoder with a funnel transformer 
yields a robust architecture suitable for IoT devices. This model 
adeptly leverages the autoencoder’s ability to acquire efficient 
representations and the computational efficiency inherent in a 
funnel transformer. In the ensuing discourse, we will delve into 
the elucidation of the proposed model, emphasizing its 
advantageous attributes by integrating the previously mentioned 
mathematical expressions into our analysis. 

The autoencoder’s role is encoding efficient representations 
of input data through its encoder-decoder structure, as previously 
explained. In contrast, the funnel transformer was intentionally 
designed to reduce computational complexity and memory 
requirements while maintaining competitive performance. This 
component features an architectural configuration resembling a 
funnel, characterized by a decrease in attention heads and an 
increase in hidden layer sizes. 

Considering this, the proposed integrated model combines 
both the autoencoder and funnel transformer components to 
leverage their individual strengths. Specifically, the autoencoder 
acts as an initial training stage for assimilating semantically 
meaningful representations. Subsequently, the funnel 
transformer employs these acquired representations for further 
processing and predictive tasks. 

In Autoencoder Encoder, the input data, denoted as ‘x’ is 
mapped into a lower dimensional latent space representation ‘h’ 
using the following equation: 

                        h   = f (W_e * x + b_e) () 

here, ‘f’ represents the activation, while ‘W_e’ and ‘b_e’ are 
the weight matrix and bias of the encoder, respectively. 

In Autoencoder Decoder, the decoder component of the 
autoencoder takes the latent representation ‘h ’and endeavors to 
reconstruct the original input data ‘x’ with the following 
equation. 

                       r   = g (W_d * h + b_d) () 

The activation function ‘g ’is applied here, and ‘W_d’ and 
‘b_ d ’denotes the weight matrix and bias of the decoder. 

Funnel Transformer is the part of the model takes the 
encoded representation ‘h’ from the autoencoder and processes 
it using a funnel-shaped architecture, characterized by 
decreasing attention heads and increasing hidden layer sizes. The 
self-attention and feed-forward network in each layer adhere to 
the previously discussed mathematical expressions. 

The 3 Sigma (3σ) limit in malware detection uses statistical 
methods to define a threshold for discerning normal system 
behavior from potentially malicious activities. Deviations 
beyond this limit trigger alerts, indicating possible malware 
actions. This approach offers continuous, quantitative 
monitoring of system behavior, enabling proactive detection and 
response to anomalies, as a consequence strengthening 
cybersecurity defenses against threats. 

Hybrid Model: In this process, a unified model is created by 
combining a funnel transformer and an autoencoder. Initially, a 
funnel transformer model is instantiated, defining the expected 
input dimension. Similarly, an autoencoder model is created 
with the same input dimension. The input data is then passed 
through the autoencoder, resulting in an encoded representation. 
A combined input layer is introduced to accept inputs from both 
models, leveraging the specified input dimension. Finally, the 
encoded output from the autoencoder is processed by the funnel 
transformer to produce the ultimate combined output. The entire 
architecture is encapsulated in a combined model, offering a 
holistic approach that first encodes input data and then employs 
the funnel transformer for further processing, ultimately 
generating the model’s final output observed in algorithm 2. 
Algorithm 3 describes the addressing malware issues in IoT 
devices using 3 Sigma limit. The following equations depict the 
combined model of funnel transformer and autoencoder. Fig 9 
depicts a representation of a hybrid proposed model. 

 inputs   = combined_input (shape = (input_dim,)) () 

 encoded_output  = autoencoder (combined_input) () 

 combined_output = funnel_transformer(encoded_input) () 

 combined_model  = Model (inputs = combined_inputs, 
outputs = combined_output)                                               () 
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IV. EXPERIMENTAL SETUP 

The IoT-23 dataset encompasses network traffic data from a 
variety of Internet of Things (IoT) devices, consisting of 23 
instances. Among these, three instances contain benign traffic 
data, while 20 instances are associated with malicious software 
activities. This dataset was initially made public in January 2020, 
and it covers the period from 2018 to 2019, with monitoring 
conducted by the Stratosphere Lab at the AIC Group within 
FEL, CTU University in the Czech Republic. A crucial 
component of this dataset is the conn.log. labeled files generated 
using Zeek’s network analysis, providing detailed insights and 
unique attributes for each entry. The dataset also includes the 
primary source data files known as pcap files, with a total of 
325,307,990 observations. Notably, the majority of these 
records, specifically 294,449,255, pertain to malicious activities. 
In this context, N represents the total number of records in the 
collection, which is 1,444,674, and each record, denoted as ‘x’ 
is a vector representation composed of various attributes. 

A. Key Performance Indicators 

In the field of deep learning and artificial intelligence, 
performance metrics are used to assess the quality and 
effectiveness of machine learning models. These metrics help in 
understanding how well a model is performing on a particular 
task, such as classification, regression, or object detection. Some 
common performance metrics in deep learning include: 

Accuracy: Accuracy measures the overall correctness of 
predictions and is computed as the ratio of correctly classified 
instances to the total number of instances. 

            Accuracy  = (TP + TN) / (TP + TN + FP + FN) () 

where, TP = True Positives (Malware correctly identified). 
TN = True Negatives (Non-malware correctly identified). 
FP = False Positives (Non-malware incorrectly classified as 
malware). 

FN = False Negatives (Malware incorrectly classified as non-
malware). 
 

Precision: Precision quantifies the model’s ability to 
minimize false positives, i.e., it measures the proportion of 
correctly identified malware out of all positive predictions. 

                         Precision  = TP / (TP + FP)                () 

 Recall: Recall assesses the model’s ability to minimize false 
negatives, i.e., it measures the proportion of correctly identified 
malware out of all actual malware instances. 

                         Recall  = TP / (TP + FN).                () 

F1-Score: F1 Score is the harmonic mean of precision and 
recall, providing a balanced evaluation that considers both false 
positives and false negatives. 

F1-Score  = 2 * ((Precision * Recall) / (Precision + 
Recall)).                                                                              () 

V. RESULTS AND ANALYSIS 

 
 Performance analysis of 3SAFT: The data for the 

“3SAFT” method demonstrates an exceptional level of 
performance across multiple metrics. First, the training and 
validation loss indicate that the model exhibits efficient learning 
during training while avoiding overfitting on the validation set. 
Additionally, the high training and validation accuracy figures 
highlight that the model performs remarkably well not only on 
the training data but also on unseen validation data. The model’s 
high accuracy of 99.73% suggests that it correctly classifies an 
overwhelming majority of the data points in both training and 
validation dataset. The precision score of 99.46% is equally 
impressive, indicating that when the model predicts a positive 
outcome, it is highly accurate with very few false positives. The 
recall rate of 99.73% underlines the model’s ability to capture 
almost all actual positive cases, making it highly sensitive. 
Moreover, the F1-Score, which is very close to the accuracy at 
99.59%, signifies a harmonious balance between precision and 
recall. In conclusion, “3SAFT” excels across all key metrics, 
making it an ideal choice for tasks where both precision and 
recall are paramount, with its robust performance seen in both 
the training and validation phases. This suggests a well-
generalized model with a strong ability to classify and identify 
positive cases accurately. 

The malware detection model’s training accuracy and 
validation accuracy are shown in Figure 10. The percentage of 
samples that were properly identified during the training phase 
is measured by training accuracy, whereas the percentage is 
measured by validation accuracy using a different validation 
dataset. Figure 11 y-axis displays accuracy values, which range 
from 0 to 1, with 1 denoting perfect accuracy. Higher accuracy 
scores show that the model’s predictions and actual labels are 
closely correlated, which reflects a better comprehension and 
representation of the data. The training epochs or iterations are 
represented on the x-axis, which shows how far along the 
training process is. The model is performing at a very high level 
overall, with a low rate of false positives and false negatives, 
according to these evaluation measures. The model appears to be 
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successful in its classification task and can be regarded as 
reliable for the provided dataset based on the high precision, 
recall, F1 score, and accuracy values. 

 

 

Figure 10.  Training and validation accuracy    

 

Figure 11. Training and validation loss 

Performance analysis with existing work: In Table 1, a 
performance analysis is presented for the proposed work 
alongside existing work. The analysis includes two key metrics: 
validation loss and training loss. The validation loss measures 
the difference between model predictions and actual data on a 
separate validation dataset, while the training loss indicates the 
disparity between the model’s predicted outputs and the actual 
ground truth labels during the training process. These loss values 
serve as numerical indicators of the model’s effectiveness and 
are plotted on the y-axis in the accompanying figure. Lower loss 
values signify a better fit to the data, indicating that the model’s 
predictions closely align with the ground truth labels. The x-axis 
represents the training epochs or iterations, illustrating the 
progression of the training procedure. This analysis provides a 
comparison of the proposed and existing approaches based on 
their loss values and training progress. Figure 13, Figure 14, Fig 
15 and Figure 16 depicts a graphical representation of data 
mention in table 1. 

TABLE I.  PERFORMANCE COMPARISON OF PROPOSED WORK ALONG 

WITH EXISTING WORK 

Methods Accuracy Precision Recall F1-Score 

DexCNN BiGRU [9] 95.80 % 95.40 % 96.20 % 95.80 % 

LSTM-VAE [7] 97.29% 94.63 % 96.07 % 95.34 % 

CNN-o [11] 94.60 % 94.96 % 94.10 % 94.53 % 

DeepAMD [4] 80.30 % 82.20 % 80.30 % 80.50 % 

Methods Accuracy Precision Recall F1-Score 

Droidetec [8] 97.22 % 98.21 % 98.35 % 98.20 % 

3-SAFT (Proposed 

Approach) 
99.73 % 99.46 % 99.73 % 99.59 % 

 
In Figure 12, a visual depiction of the discovered anomalies 

or probable malware instances is provided via the plotted 
reconstruction errors and the labelled anomalies. Understanding 
the prevalence and severity of the reconstruction mistakes across 
the dataset is made easier by the figure. The probable malware 
cases are indicated by the red scatter spots that emphasize the 
areas where the reconstruction mistakes are greater than the 
threshold. Overall, based on the metrics for evaluation and the 
visualization, it appears that the malware detection system that 
uses a combination model and reconstruction error to identify 
malware samples is quite accurate and efficient.   

 

Figure 12. Addressing Malware 

 
 

Figure 13. Accuracy 

 

Figure 14.  Precision  
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Figure 15. Recall 

 

Figure 16.  F1-Score 

VI. CONCLUSION 

In conclusion, the autoencoder and Funnel Transformer 
model combined has a lot of potential for solving the malware 
problem in IoT devices. This methodology effectively detects 
and mitigates malicious software threats in IoT environments by 
combining the advantages of both architectures. In order to 
detect aberrant patterns that can point to the existence of 
malware, the autoencoder component of the model facilitates the 
learning of meaningful representations of IoT device data. The 
autoencoder detects key characteristics and patterns that may be 
suggestive of malicious behavior by compressing the input data 
into a lower-dimensional latent space and then recreating it. The 
Funnel Transformer component improves the model’s capacity 
to examine and categorize data from IoT devices. Its hierarchical 
structure effectively processes the sequential nature of IoT data 
and identifies complicated malware patterns by capturing both 
local and global dependencies.  

Overall, the Autoencoder and Funnel Transformer model 
combined gives a viable solution to the problem of malware 
detection in IoT devices. It offers a strong and effective method 
for spotting dangerous patterns in IoT data by combining the 
strengths of both designs, thereby strengthening the security and 
integrity of IoT ecosystems. Through a diligent concentration on 
these forthcoming avenues of research, scholars have the 
opportunity to propel the amalgamated autoencoder and Funnel 
Transformer model towards confronting malware in IoT devices. 
These endeavors possess the potential to augment the model’s 
efficacy, expand its capacity for growth, elucidate its 

interpretability, and notably bolster its practicality within real-
world scenarios. Consequently, such endeavors will fortify the 
security and steadfastness of IoT ecosystems against incessantly 
transforming malware perils. 
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Figure 4.  A brief overview on data preprocessing 

                             

Figure 9.   Proposed hybrid model 

 

http://www.ijritcc.org/

