
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3663

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Towards the Definition of Application Developer

Persona and Developer Experience

Conceptualization

Abdul Saboor1, Lukman Ab Rahim2, Noreen Izza Arshad3, Kamarul Zaman Abdul Rashid4, Tat Kin Tan5, Idris

Ismail6, Ahmad Kamil Bin Mahmood7

1,2Department of Computer and Information Sciences
High-Performance Cloud Computing Centre

Universiti Teknologi Petronas

32610 Sri Iskandar, Malaysia

abdul_19001745@utp.edu.my , lukmanrahim@utp.edu.my
3Positive Computing Research Center

Universiti Teknologi Petronas

32610 Sri Iskandar, Malaysia

noreenizza@utp.edu.my
4,5Intel Corporation (Programmable Solutions Group)

 c/o Intel Microelectronics (M) Sdn. Bhd., Bayan Lepas Technoplex, Medan Bayan Lepas,

11900 Bayan Lepas, Penang, Malaysia

kamarul.zaman.abdul.rashid@intel.com , tat.kin.tan@intel.com
6Department of Electrical Engineering,

Universiti Teknologi Petronas,

32610 Sri Iskandar, Malaysia

idrisim@utp.edu.my
7Interventure Tech Enterprise

Laluan Tronoh 9

31750 Tronoh, Malaysia

ahmadkamilmahmood@outlook.com

Abstract— For decades application developers (ADs) encountered numerous challenges in employing hardware acceleration capabilities

as they are difficult to abstract and consume with ease, thus ADs are avoiding such capabilities and eventually ignoring them altogether and

fully dependent on the operating system and virtualization vendors to abstract and provision those acceleration features. With the advent of
microservices, there is a need to research this topic in order to comprehend ADs requirements and expectations. This paper aims to give

additional conceptualization of ADs persona description and experience around the inclusion of software frameworks/libraries among

established technology strategy leaders and developers. The qualitative research method was used which led to conducting in-depth individual

interviews associated with the domain of application development. These in-depth interviews, based on the Unified Theory of Acceptance and
Use of Technology (UTAUT) paradigm, investigate strategic leaders' and technical specialists' intentions to accept and use hardware features.

The study finally produced a conceptual framework comprising four aspects that describe ADs persona. The framework provided high-level

descriptions of how certain properties can be implemented. The conceptual framework can be utilized by new or established ADs to identify

specific traits to focus on. The highlighted features will lead to further studies quantifying their future influence.

Keywords- Application Developer Persona; Developer Experience Conceptualization; Developer Obsession; Hardware Acceleration

Capabilities; Hardware Feature Accessibility; Microservices

I. INTRODUCTION

With the advancement of information and communication
technology, application developers have gained prominence to
design and deliver solutions that change lifestyles and improve
productivity [1], [2]. However, application developers (ADs)
encountered multiple issues in employing existing hardware
acceleration features, libraries, and application programming
interfaces (API). As increased and rich developer experience
(DX) has been linked to increased productivity, it is no surprise
that many businesses, technology companies, and developer

communities view it as a priority to promote a more DX-oriented
work environment that promotes ease of use for their developers.

This study, therefore, aims to get a better understanding of
the characteristics that are thought to best represent developer
obsession and associated persona definition that would define
the new DX centered around the use of hardware acceleration
features with ease, while focusing specifically on how and why
these characteristics are significant in forming the personas of
ADs. The persona concept was initially introduced by Alan
Cooper and focused on the utilization of personas, their
objectives, and scenarios in design [3]. It has since been

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3664

IJRITCC | September 2023, Available @ http://www.ijritcc.org

emerging as a promising and new paradigm in user needs
modeling.

Personas are made up of precise, and tangible depictions of
target users [4]. They are designed to seem like actual people,
thus they contain information such as names, ages, educational
backgrounds, jobs, skills, ambitions, worries, surroundings,
system usage habits, and so on [5]. Personas capture rich user
behavior models and can assist in gaining a deeper knowledge
of the target audience and making better design decisions based
on these personas [6]. It is therefore needed to research this topic
to comprehend application developer personas. This paper aims
to give additional conceptualization of application developer
personas description and experience around acceptance of
hardware acceleration features among established companies,
technology strategy leaders, and developers alike. In this vein,
the objective and aims of this project are as follows:

Objective: The objective of this research study is to
comprehensively examine the operational functionalities and
engagement determinants of ADs concerning their utilization of
software-integrated development hardware acceleration
features.

Aim: This research study aims to raise understanding of the
attributes that are perceived to be characterized as DX namely
on how and why these attributes are important in shaping the
ADs personas.

II. LITERATURE REVIEW

Previous studies have attempted to determine the elements
that may influence the levels of satisfaction, developer
obsession, quality of work life, productivity, and motivation
experienced by application developers. This section outlines
some of the existing research studies performed.

An investigational study highlighted the factors that affect
the productivity of software development [7]. The authors
conducted an empirical study using the data available at the
International Software Benchmarking Standards Group which is
a software project repository. The authors concluded that four
factors that influence productivity are computer-aided software
engineering tool usage, choice of programming language,
architectural types, and business areas.

A study highlights that while software developers implement
secure practices, they often overlook their usability [8]. Through
interviews with software professionals, contextual factors such
as stakeholder pressure, expertise availability, collaboration
culture, and the implementation of the software development
process were found to significantly influence the usability of
security features in software products. The study concludes by
suggesting the need to study and improve these contextual
factors to enhance usable security in software.

The effects of various styles of transformative leadership on
the motivation of software developers are also investigated [9].
It makes use of the full-range theory of leadership and zeroes
down on the impact that transformational leadership has on the
creative actions of software engineers. The findings indicate that
charisma, inspirational motivation, intellectual stimulation, and
individualized consideration positively contribute to affective
organizational commitment, which in turn enhances innovative
behaviors among software engineers.

In another research study, the authors analyzed 825 online
forum postings posted by developers on a platform designed for
the developers' community to share their frustrations and joys
[10]. The postings were written in the early months of the

pandemic which explains their condition and well-being.
Negative comments make up around 49 percent of all threads,
while positive ones make up approximately 26 percent. Authors
discover evidence that developers have difficulties with working
remotely due to a lack of documentation and dealing with
loneliness while working from home.

The accumulation of technical debt (TD) can be a barrier to
progress in software development and ultimately impact the
software developer [11]. According to the findings of the
investigation study, software engineers lose an average of 23
percent of their working time owing to TD, and they are
regularly required to implement new TD. Additional testing is
often the work that consumes most of the additional time that is
made available. The findings of the study show proof that TD is
detrimental to developers since it results in an excessive waste
of working time, and wasted time has a detrimental effect on
productivity.

Greiler et al. [12] conducted semi-structured interviews with
software developers working in various industries, transcribed
those interviews, and then iteratively coded the results to gain a
better understanding of the factors that influence the developer
experience. The results of the study shed light on the aspects that
influence the developer experience as well as the traits that
determine the relative significance of those factors to individual
developers. The authors proposed a developer experience
framework that offered a comprehensive reference that can be
utilized by businesses that are interested in fostering more
efficient and fruitful working conditions for their software
engineers. It is suggested that a three-step method be used to
make use of the DX Framework to methodically enhance the
development experience. The three-step method was based on i)
Ask: making the problem visible and learning about the
developer’s day-to-day experience; ii) Plan: identifying the
specific owners of each area that requires improvement and
delegating responsibility for its implementation to the
individual, team, and organization levels; iii) Act: developers
don't have to rely exclusively on their teams or the direction of
their managers to force change; they may utilize their particular
tactics to achieve changes instead, this working on continuous
small improvements is the key to success.

Another study examined how cultural lag theory might be
used in software development to better understand the effects of
technological advancements [13]. The Gioia method was used to
evaluate interviews with subject matter experts, which revealed
key developments in software engineering (Gioia et al., 2020).
The findings identified four trends that will significantly alter the
software development industry, which are: the rise of scalable
solutions, the importance of data, the merging of the IT and non-
IT sectors, and the widespread adoption of cloud computing.

For a software engineer to have a productive day, they need
to be able to choose their activities, use their preferred tools, and
have few interruptions. A survey of professional developers
revealed that email had a negligible effect on unproductive days,
but meetings and interruptions might be beneficial at specific
stages of development [14]. Researchers and managers may
boost productivity by encouraging developers to take ownership
of their work and suggest changes to procedures and tools.

A study to support developers’ productivity built the SPACE
framework to capture the many aspects of productivity, since,
without it, prevalent and even destructive opinions about
productivity may continue to prevail [15]. The dimensions of the
SPACE framework were based on Satisfaction, Performance,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3665

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Activity, Communication, and Efficiency. The SPACE
framework offered a method for logically and methodically
thinking about productivity in a much larger space, as well as a
defined method for carefully choosing balanced metrics that are
linked to goals. It also well-defined the method for
understanding how these metrics may have limitations if used
alone or in the wrong context.

Another research study examines the challenges faced by
software developers in implementing privacy measures [16]. It
draws attention to the fact that privacy isn't always a top priority
for developers and that there aren't always sufficient resources
available to aid in the creation of apps that respect users' right to
anonymity. To address privacy concerns, the paper reviews
existing frameworks and tools for developers, finding them to be
clumsy, narrow in scope, and inadequate to address privacy
issues.

The human factors in software security and their impact on
vulnerabilities were examined through an online survey of 123
software developers, and the authors concluded that
organizational and process support, rather than individual
developers, play a significant role in addressing security issues
[17]. The authors emphasized the need for a holistic approach
that considers organizational factors when addressing software
security.

The existing studies lack the representation of an application
developer persona about employing hardware acceleration
capabilities. Therefore, it is evident that there is a clear gap in
investigating the working processes of application developer
persona and the factors that are thought to keep them engaged
with software-integrated development environments (IDE),
libraries, and frameworks to use the hardware libraries.

III. METHODOLOGY

The qualitative research approach was chosen because it
appears to be the best fit for the study's aim and objective. In-
depth one-on-one interviews with a predetermined number of
respondents who were purposefully chosen depending on how
many years of experience they had playing the role of ADs were
conducted as part of this study [18]. This was crucial so that the
interviews could concentrate on specific traits of interest, which
has made it possible to achieve the research objectives, namely
the identification and selection of respondents with rich
information about the definition of the ADs personas and their
experiences with accepting software IDE, libraries, and
frameworks. Given are the details of the interview settings and
the theory used for the analysis of the conducted interviews.

A. Semi-structured Interviews

Semi-structured interviews with a series of key questions
were used to help identify the areas to be investigated and to
allow interviewers or interviewees to deviate and follow a
concept or response in greater depth. This interview style is most
commonly used in the social science disciplines since it gives
participants some direction on what to talk about, which many
people find useful [19]. This method allows for researchers to
acquire in-depth information and evidence from interviewees
and its adaptability enables the context-based discovery or
enrichment of information, providing a more thorough
understanding of what occurred and why.

The interviews took place over the course of a month. The
Unified Theory of Acceptance and Use of Technology
(UTAUT) model, developed by Venkatesh et al., (2003), was

adapted for use in these in-depth interviews by Venkatesh et al.,
(2012) as a lens to examine the strategy leaders' and developers'
intentions to accept and use hardware architecture libraries or its
equivalent in their implementations. The respondents' profiles
are shown in Table 1. The names of the respondents are kept
hidden to maintain confidentiality and anonymity.

TABLE I. PARTICIPANTS DEMOGRAPHICS PROFILES

Respondent

ID

Role Years of

Experience

Group

S1 Application

Developer (Desktop)

12 Technical

Specialist

S2 Platform Software

Developer

20 Technical

Specialist

S3 Middle-Tier Integration

Developer

8 Technical

Specialist

S4 Application Developer

(Web)

10 Technical

Specialist

S5 Technology Strategy

Leader

30 Strategic

Leader

S6 Application Developer

(Desktop)

5 Technical

Specialist

S7 Engineering

Manager/Director

27 Strategic

Leader

S8 Technology Strategy

Leader

32 Strategic

Leader

S9 Hardware Driver and

Middleware Developer

8 Technical

Specialist

S10 Hardware Driver and

Middleware Developer

24 Technical

Specialist

S11 Hardware Driver and

Middleware Developer

15 Technical

Specialist

B. The Interview Settings

The interviews were planned according to the respondents'
availability and convenience, and they were all performed online
using MS Team owing to social distancing constraints. The
questions were designed in such a manner that they are likely to
produce as much information on the study phenomenon as
feasible while also addressing the research's aims and objectives.
In the interview, technology strategy executives and technical
specialists were asked 22 open-ended (i.e., requiring more than
a yes/no answer), impartial, sensitive, and intelligible questions,
as well as probing questions. It started with questions that
responders could readily answer before moving on to more
difficult or sensitive topics. This strategy helped to put
respondents and interviewers at ease, create confidence and
trust, and provide rich data that was later used to refine the
interview further. The length of the interviews varied based on
the respondents, but on average lasted 70 minutes.

Before the actual data collection, the questions were piloted
on a few respondents. Pilot interviews with two experienced
ADs were done. This exercise has given the study team
confidence that the interview questionnaires are clear,
comprehensible, and capable of being answered by respondents.

C. Developing the Interview

Before the interview, respondents were informed about the
study's specifics and assured of ethical norms such as anonymity
and confidentiality. This offers respondents a sense of what to
expect from the interview, enhances the possibility of honesty,
and is a critical component of the informed consent process.
Establishing mutual understanding before the interview is also

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3666

IJRITCC | September 2023, Available @ http://www.ijritcc.org

vital since it has a beneficial influence on the interview's future
progress.

The interviewer acquainted themselves with some of the
interview questionnaires before doing the real interview, so that
the process seems natural and less rehearsed. To ensure that the
interview was as beneficial as possible, the researchers made
certain that thorough and representative data were captured
throughout the interview with researchers taking notes and video
and audio recording as backup. Because the interviews were
performed online, open, emotional/neutral body language such
as nodding, smiling, and seeming engaged were somewhat
limited compared to when the interview was done in person.
Nonetheless, the strategic use of silence (the interviewer
intentionally remaining silent as a subtle hint to the interviewee
to talk more) was employed, which was highly helpful in
persuading respondents to think about their comments, explain,
or clarify difficulties.

At the end of each interview, the participants were
acknowledged for their time and asked if there was anything they
would like to add. This allowed the respondents to deal with any
issues that they thought were important but had not been dealt
with leading to the discovery of new, unanticipated information.
Field notes were prepared during and immediately after each
interview about any important observations, key thoughts, and
ideas as this can help during the data analysis process.

D. UTAUT Theory

UTAUT was used as the theoretical foundation for this study
to better understand how and why various software IDEs,
libraries, and frameworks are chosen by ADs, as well as their
acceptance, resistance, preferences, and common behavior [20].
As a result, the four UTAUT factors have been adopted and used
to build the semi-structured interview questions [20]. The effort
was to learn more about how and why ADs choose to work with
software IDEs, libraries, and frameworks and how these choices
are linked to various performance and effort expectations, as
well as social influences and enabling circumstances. It is also
important to note that the intention was not to find which factors
are accepted or rejected. The main intention of using the four
factors of UTAUT was to have an initial lens that guides this
study to probe how and why the decision is made that could be
associated with AD’s performance expectancy, effort
expectancy, social influences, and any possible facilitating
conditions, briefly explained as follows [20]:
1) Performance expectancy: In what ways do the ADs
believe that using the software IDE, libraries and frameworks
will help him or her attain gains in job performance?
2) Effort expectancy: In what ways does the use of the
software IDE, libraries, and frameworks ease the ADs tasks?
3) Social influence: In what ways is the ADs choice of
using a software IDE, libraries, and frameworks influenced by
others and the surroundings?
4) Facilitating conditions: In what ways do the ADs use
of software IDE, libraries, and frameworks motivated or
influenced by certain conditions that include organizational and
infrastructure?

Using the unified theory of acceptance and use of technology
helped with qualitative research focused on the application
developer persona and conceptualization of developer
experience in the given ways [22], [23]:
1) Theoretical Framework: UTAUT served as a
theoretical framework to guide the qualitative research study

exploring developer experience. Leveraging UTAUT's
constructs related to technology adoption, such as performance
expectancy, effort expectancy, social influence, and facilitating
conditions, provided insights into how software developers
conceptualize and perceive DX.
2) Research Design: It helped in the development of
discussion topics and interview questions that align with
UTAUT's constructs. This ensured that the study probes into the
relevant aspects of DX, including attributes that influence
developers' acceptance and use of features, tools, platforms, and
APIs.
3) Data Analysis: UTAUT served as a filter through
which the qualitative data was categorized and interpreted
during the data analysis phase. The codes and themes that
emerge from the data can be related to UTAUT's constructs,
allowing for a structured analysis of the factors that shape DX
conceptualization among developers.
4) Interpretation of Findings: UTAUT's relationships
between its constructs were explored and interpreted using the
contextual data obtained through qualitative research. This
helped to grasp how performance expectancy, effort expectancy,
social influence, and facilitating conditions interact and
confluence developers' perceptions of DX.

IV. RESULTS AND DISCUSSION

Figure 1 depicts the qualitative data analysis methods
employed in this study, beginning with data transcription and the
tools used, analysis regions, coding, sorting, and then presenting
the findings in terms of themes.

Figure 1. Qualitative data analysis processes.

To begin with data transcription, the interview transcript

(transcribed from the video/audio) and field notes were uploaded
into the NVivo* program, which was extensively utilized to
assure data integrity. The hermeneutic method [24] was
employed for the analysis section to emphasize the “sense-
making” or comprehension of the ADs persona in context based
on the respondents' broad knowledge of software
frameworks/libraries. Following that, coding was performed,
which is an analytical technique of classifying data by grouping
similar material into a container known as a node. All relevant
references may be seen and traced inside a node. A node is
therefore a code that reflects themes or subjects identified in
data. Both deductive and inductive approaches were used. The
sorting procedure started after the nodes were constructed. This
approach classified, reduced, and depicted links between
categories, and looked for commonalities between code
categories. Finally, the findings were exhibited via modeling the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3667

IJRITCC | September 2023, Available @ http://www.ijritcc.org

qualitative data in NVivo*, which resulted in a visual
representation of what was happening in the data, specifically
how various items may be associated. It provided a visual sense
that might be related to theoretical models (UTAUT) or just a
technique to step back from the data to articulate, illustrate, and
explain linkages that are emerging to be recognized.

The coding basis, laid the groundwork for further improving
the thematic analysis and working in an emerging and evolving
mode for the focused codes, i.e., having some initial codes and
then developing the others in an emergent manner. In either case,
it provided the opportunity for coding on a broad level. In the
Mind Map, analyzers find what the individuals think of their
initial codes and transform them into more specific codes. Later,
went into each code, reviewed the range of topics covered, and
afterward coded more finely within the code. This activity leads
to the emergence of the developer experience quadrant and the
recommendations for the application developer persona and
developer experience conceptualization, as explained below.

A. Developer Experience Quadrant

As explained earlier, the personas were derived using cluster
descriptions and interview transcripts. After the personas were
determined, the interviews were thoroughly checked to
substantiate the identified personas. Finally, the visual
representation of the findings emerged as a developer experience
quadrant. A developer experience quadrant with tiers is
presented in Figure 2. It illustrates the meaning and
comprehension of the ADs persona based on their expertise with
various frameworks and libraries.

Figure 2. Developer Experience Quadrant

Following is the detailed elaboration of the four identified

quadrants for “Application Developer Persona and Developer
Experience Conceptualization” from the respondents’ point of
view.
1) Ease of Use: A technology strategic leader who is also
a CEO of a well-reputed organization, infers the ease of use by
saying that:

 “I truly believe from a developer’s perspective it is the ‘ease
of use’ or the ‘ease of build’ that drives the behavior. No matter
whom you talk to eventually you will realize that conclusion that
it is the ease of build. And in the industry, if something becomes
too difficult to do from a coding standpoint, either there is a new
language that comes out that’s fairly easy or someone builds a
tool that will build the code for them” [S8].

The same is projected by a technical specialist:
“You know, one of the most important things is how easy it

is to develop in the framework, how easy to test, and how easy
to debug. All of these criteria that are mentioned before are
important so that our developers will focus on their main
problem and not on the ecosystem of how do I monitor, how do
we build, and how do we deploy, and all those other areas. We
want them to focus on the problem” [S10].

According to the developed coding schema, the ease of use
is based on:

• API Hooks on Soft/Hard IP Features - “I mean the
coding we write, we put into the server and let others
call. The other implement functions and then they will be
charged on a per-request basis. So, they are more
focused on the service, the requests, I mean, to provide
the service, this and that for the whole server. They will
provide until the very small parts like functions, like the
applications service, then the performance, the server,
then I mean, the things that will be getting big.” [S6]
“For example, when we leave the integration on the
application, A to Z, you just have to subscribe to the
service and then we do our coding there, and the coding
there becomes easy when you just have to select the edit
tool to manage the application that we adapted than we
do mapping in the invitation group, that you’ll be
working” [S1]
“I like the idea of kind of creating those high-level
libraries that expose features as part of your product
thinking and your product rollout. Figuring out how to
go up the stack and creating things that are easier to
click into at a high level.” [S5]

• SECO Agnostic - “And then the other is just ecosystem
So, as you know, there is a whole Node JS ecosystem,
right, and then there is you know whole .net ecosystem,
and then there's sort of you know the whole Python
ecosystem. And organizations really, you know, that they
align with one of those ecosystems” [S5]

• Instant Reward - “The newer generation that comes out,
they are looking for an instant reward, you know,
immediate gratification” [S8]

• Open-source - “We tend to focus more on the open
source. So, what we consider is, if there is a free license
for you to use then we will prioritize that one.” [S4]
“For an open source, if there's a bug that somebody
found out there, they will just fix it, and then they will
just put it up there so that people can actually run the
working one.” [S11]

• Easy Debugging and Instrumentation - “…ability of
developers to quickly understand, quickly use. And, you
know, instrument and debug and all those things is a
major driver” [S5]
“…the debugging capabilities that are available, how
easy it will be to debug the application in the production
environment.” [S10]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3668

IJRITCC | September 2023, Available @ http://www.ijritcc.org

2) Ecosystem: The ecosystem is described as an
environment of space of work where future evolution, maturity,
and extension of the strategy happens. It is a collaborative
innovation (co-innovation) approach by developers, software
organizations, and third parties that share a common interest in
the development of software technology.

To shed light on the ecosystem, a technology strategic leader
highlighted that:

“Another thing to think about is the ecosystem too. It is like
you have to make these ecosystem plays or become one yourself.
And there is a low-level hardware ecosystem. And you know,
growing up the stack so that you are a ‘hardware-software
ecosystem’ is probably your only defense around the software
companies that are growing down the stack to build their own
silicon” [S8].

Another technology strategic leader highlighted that:
“You have to be, you know, you have to be part of those, you

know, those dominant ecosystems” [S5].
To build a firm ecosystem, the coded data featured the

following key areas:

• Developer Community - “Community forums are very
often where people get whatever information that is not
documented” [S11]

• “I do a deep survey to see if the community is big or not.
So, if the community is huge enough, I will pick that one.
I would prefer a community that is common in the
market” [S4]

• Documentation - “Let us say we are getting some library
from the community, so usually I will look through the
document first before I decide whether I want to go in or
not. Usually, I spend around one week reviewing that
document before I set a goal for my team to go in and
use that library” [S2]

• Emerging Technology - “I always do that, regardless of
where I am. I am always looking at the competency
landscape. I'm looking at emerging technologies” [S8]

• Integration - “It's the entire ecosystem that we have on
top of feed aggression, integration, and let the amount
of you know custom code libraries that we created to
share between the different applications that we have”
[S10]
“Compared to the previous implementation, you will
have to write Java code, or SQL to do the integration.
Now, with the technology change, it becomes very easy
to build and easy to learn” [S1]

• Loyalty - “…where you are much focused on one
architecture and then you enable and you support that,
you know, you can provide more comprehensive
support. So, I would say, in that sense that may be better
proprietary, and you guys know it well, and you can
build loyalty and all that” [S7]
“Some companies are loyal to a certain environment
probably because it helps them to develop their product
fast” [S11]

• Support - “If we can have a software that you know, you
can support backward compatibility, you support future
enhancements, future expansion, that would very much
be easy for them to just port over their existing software
on whatever hardware platform” [S11]
“Provide different types of support, either if you have a
server issue or some other issue. They have multiple
teams, sometimes it’s a server issue and sometimes it’s

a code issue. Sometimes if you have a coding issue, you
can ask for support too.” [S3]

3) Framework: The framework deals with the delivery of
mature and stable software interfaces that provide seamless
access to Silicone/hardware features. As quoted by [S6]

“Maybe why we choose the framework is that we like the
flexibility that people can adapt very fast, very flexible. Then they
can join the project very fast”.

A technical specialist quoted:
“So, engineering programming and business programming

are two. I see that as mainly two drastic worlds. So, in business
programming, I do not care about what is the underlying
hardware. I know that frameworks like .Net or even Java can do
the so-called abstraction or isolation. So, they will do the
optimization at the intermediate layer. But in engineering, this is
different because when we code right, we already have a mindset
of what kind of architecture we want to target” [S2].

According to the coded data of this study, the framework
choice and features are based on:

• CASE Tools Alike - “Computer Aided Software
Engineering ‘CASE’ tools. Some application platform
providers did a phenomenal job of creating a set of tools
that wrote applications. It was able to take your data
sets, take your painted screens, tie them all together,
generate an application from scratch, write all the code
needed, and deploy it. So, my suggestion would be if one
can create something like that, not using the yesteryear
tooling and technologies, but can counter the case tool,
that our local tool that's able to harness the power of
your hardware, and generate applications, using the
latest coding JavaScript, React, Native or any of the new
frameworks that you see.” [S8]

• Coding Beyond Syntax - “To me, I feel that that kind of
visualization is very good because you don't have to read
through code set to understand what or which function,
where do I call, and when do I call it?” [S11]
“I think it will lead the companies into that one. Try to
create something that everyone can use. Like adapters,
or all the tools, and hardware that everyone can use
within a few clicks. That is the most important thing. So,
customers can use it without having any deep technical
experience” [S3]

• Partnership - “I need to follow the company's
commercial directions and partnership concerns. In the
current situation, so many limitations for us to choose
our framework or need to take care of other things. We
need to get approval from the companies as well.” [S6]

• Quick Learning Curve - “…when we decide to choose
how fast the ramp-up of a new developer, how easy it
will be for him to start to develop on this new platform?”
[S10]
“Maybe why we choose the framework is like the
flexibility that people can adapt very fast, very flexible.
Then we can join the project very fast.” [S6]

• Hardware Access for Special Purposes - “However, if
there will be a huge motivation for the developer to
understand and benefit from the low level and from the
hardware feature, then there is a reason to use it, but
there should be a very good reason” [S10]

• Brand Perception - “I really choose based on how easy
for us to use, because time is very important. You can’t
lose time. So, if even if you buy from a big brand, and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3669

IJRITCC | September 2023, Available @ http://www.ijritcc.org

they can give you 10 people to support, but you still
cannot get things working within a certain time, then it
is still of no use.” [S11]
“I feel that if you are a big brand, it's not necessary that
you can develop good software. There are some others,
I mean some startups that can develop better software
than those big brands, and so on. So, for me, I don't
choose based on brand.” [S11]

• Si Microservices Catalogue - “Hardware itself is not
sustainable. And there's a need to add all the software
and content, for example, diversifying from what used to
be a pure-play hardware company to a broader, you
know, so many different areas that they're getting into.”
[S8]

“So, by handling that part they will provide a service that
they will act as the hardware part and provide a service to let
others use minor things like you can create libraries and put into
the local repository and then let others call and implement it”
[S6].
4) Quality and Maturity: Quality defines the practices and
behaviors that are desirable to meet the developer’s expectations.
One of the technical specialists addressed quality as:

“…you know, at the end of the day, the quality of life, the
overall quality that will be achieved by developing it, the
debugging capabilities that are available, how easy it will be to
debug the application in the production environment. This is
probably the main criteria that will help us to choose which
framework to use” [S10].

Another technical specialist said:
“Loyalty will eventually come with the quality” [S9].
The quality is focused on enriching the experience of the

target end-user with measurable quality protocols. Given the
developed coding schema, the quality protocols fall upon as
follows: -

• Performance - “What is the overhead of using this
platform, for example, from a communication
perspective, and things like that? Do we have some
hitting in performance, and you know, it can be the
memory size, the footprint that is required just launching
the framework, and the CPU consumption? These are
the factors that we're looking at.” [S10]

• Portability - “…we can have software that supports
backward compatibility, support future enhancements,
future expansion. That would make it very much easy to
just port over their existing software on whatever
hardware platform” [S11]

• Interoperability - “Because of the upgrade version, we
keep on having some problems with this kind of solution.
Because the solution always sticks to the old version and
when it becomes the new version, I cannot use it
anymore. So, every time I need to strive, struggle.” [S4]

• Reliability - “We need to make sure the new library
works. We do not know what bug will happen eventually
along the line. So, we always find a stable one, most
supported by the footprint of how many users are using
that library” [S9]

• Security - “I chose the framework because there are a
lot of things that are already ready. So, I do not need to
worry about security. The security I apply is from the
framework” [S4]

• Auditable/Origin Traceable - “Once we need to be
working as a team, we need to know control version,

which means once you have done some work, how the
people, how your team member knows what are the
things that you have done, and then they can get what's
the latest coding from your side or another team side.”
[S4]

B. Recommendation

Following the theoretical background of the UTAUT model,
this research has conducted interviews to explore the thoughts
and vast experience of the strategy leaders and AD’s intention to
accept and use hardware architecture features or their equivalent
in their implementations. The theory drives this work in
exploring ways ADs function and raising the understanding of
what makes them engaged with software IDE, libraries, and
frameworks. The four factors of UTAUT including performance
expectancy, effort expectancy, social influence, and facilitating
conditions are investigated through interview questionnaires.
The collected interview data provide evidence and insights that
characterized ADs personas. The data provide narratives of what
is considered important in shaping ADs obsessions. Based on
this evidence, four important recommendations are made:
1) Building Ease of Things: The Ease-of-Things (EoT)
refers to the convergence of developer experience. ADs are
looking for software IDEs, libraries, and frameworks that
prioritize EASE-OF-USE. According to the interviews, ADs
have requested a mature ecosystem, which is defined as the
proliferation of high-productivity, high-performance software
across all spectrums to enrich and enhance their experiences. As
a result, this study concluded that it is time to develop EoT using
the following strategies:

• Developing a broad strategy centered on developer
experience and a software-first approach.

• Putting the developer first in all product, tool, and
service decisions.

• Every Soft or Hard IPs on silicone must include the API
hook that can be exposed to the software interface when
needed.

• Software Ecosystem (SECO) agnostic, whereby the
design blocks of the microservices can be consumed or
worked on across multiple SECOs such as Android,
dotNet, etc.

2) Building an ecosystem that incorporates collaborative
innovation: It has been noted that social factors play a very
crucial role. In this arena, it was discovered that ADs obsessions
are formed to some part by social factors such as other users and
groups' activities. This is significant since ADs thrive on
information exchange for the most recent best practices. As a
result, moving ahead, plans should include collaborative
innovation initiatives for future evolution and maturity, such as:

• Creating a work environment that fosters co-innovation
approaches among developers, software companies, and
third parties with a mutual interest in the advancement
of software technology.

• Develop strategies to eliminate the technological and
operational hurdles that stand in the way of ecosystem
monetization.

• Accelerating value realization and customer success
through regular interactions, education, and sharing of
expertise with essential and potential stakeholders

3) Creating stable and mature software interfaces
(microservices) to seamlessly connect to hardware features: It
has been shown that both external and internal factors affect ADs

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3670

IJRITCC | September 2023, Available @ http://www.ijritcc.org

usage of technology. These requirements, which are frequently
entangled between technological, infrastructural, and other
characteristics, make it easier to choose a certain software IDE,
libraries, and frameworks. This motivates ADs to use the tools
at their disposal, which aided implementation in a variety of
ways, including having:

• Tools assistance, and technologies that provide mature
and robust software interfaces/APIs, as well as hardware
microservices that give smooth access to
silicone/hardware features.

• A drag-and-drop programming IDE, which is a visual
interface that allows ADs to program by dragging
components/constructs with minimum syntactic
knowledge, might drastically reduce implementation
time.

• Available silicone features in the form of consumable
features or an interface for ADs consumptions for quick
and easy implementations.

4) Performance augmentation and strengthening
framework for high productivity, secure, and high-performance
AD-driven experience: According to the data gathered, the
concept of AD performance expectations appears to be relevant.
ADs are motivated by gaining enriched expertise during
implementation that might improve software quality such as
security and performance efficiency. ADs sought engaging
experiences to boost their productivity, which included
quantifiable factors like compilation time and coding help,
among other things. This has prompted the following
recommendations for designing software IDEs, libraries, and
frameworks that allow for:

• Interoperability, which allows codes and output from
multiple development platforms to communicate
information and call functionalities.

• Auditability and traceability which enable created codes
to be completely auditable and traceable back to their
source.

V. CONCLUSION AND FUTURE WORK

This research employs a cross-sectional approach to capture
a snapshot of what is happening at one point in time, supported
by empirical evidence from strategy leaders and technical
specialists describing their past events and experiences. This
empirical evidence and understanding derived from the
participants are then used to discover insights on what is
perceived as “ADs obsession” that drives them to be engaged in
software IDE, libraries, and frameworks. This study provided an
enhanced conceptualization of application developer persona
descriptions and experiences related to the use of hardware
libraries and frameworks. Through the use of qualitative
research methodology, extensive one-on-one interviews of
persons related to the field of application development were
conducted.

The findings of this research provide new dimensions to the
field of study in the form of a conceptual framework consisting
of four quadrants that describe the ADs personas. The
framework provides high-level examples of how these
characteristics might theoretically be converted into actions to
enhance the application developer experience. This study has
implications for both practice and research in the sense that the
conceptual framework may be utilized by new or existing ADs
to highlight the traits they should focus on. The highlighted

features will also result in a further investigation, including the
quantification of their influence on potential outcomes.

ACKNOWLEDGMENT

The authors acknowledge the support provided by the Intel
Corporation (Programmable Solutions Group). The authors
would like to express their gratitude and appreciation to
Universiti Teknologi PETRONAS (UTP), Perak, Malaysia, for
providing the resources and computing environment.

REFERENCES

[1] M. Audi, A. Ali, and R. Al-Masri, “Determinants of

Advancement in Information Communication Technologies
and its Prospect under the role of Aggregate and Disaggregate
Globalization,” Sci. Ann. Econ. Bus., 2022.

[2] M. Audi and A. Ali, “The advancement in Information and
Communication Technologies (ICT) and economic
development: a panel analysis,” 2019.

[3] A. Cooper, “The inmates are running the asylum.
Indianapolis, IA: SAMS,” Macmillan, 1999.

[4] P. D. Marshall, C. Moore, and K. Barbour, Persona Studies:
An Introduction. John Wiley & Sons, 2019.

[5] J. Salminen, K. Guan, S.-G. Jung, S. A. Chowdhury, and B.
J. Jansen, “A Literature Review of Quantitative Persona
Creation,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, in CHI ’20. New
York, NY, USA: Association for Computing Machinery, Apr.
2020, pp. 1–14. doi: 10.1145/3313831.3376502.

[6] B. Jansen, S.-G. Jung, L. Nielsen, K. W. Guan, and J.
Salminen, “How to Create Personas: Three Persona Creation
Methodologies with Implications for Practical Employment,”
Pac. Asia J. Assoc. Inf. Syst., vol. 14, no. 3, Mar. 2022, doi:
10.17705/1pais.14301.

[7] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on
the factors affecting software development productivity,” E-
Inform. Softw. Eng. J., vol. 12, no. 1, pp. 27–49, 2018.

[8] M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A.
Sasse, and S. Fahl, “How Does Usable Security (Not) End Up
in Software Products? Results From a Qualitative Interview
Study,” in 2022 IEEE Symposium on Security and Privacy
(SP), May 2022, pp. 893–910. doi:
10.1109/SP46214.2022.9833756.

[9] Y. Choi, “How does Leadership Motivate the Innovative
Behaviors of Software Developers?,” in Research Anthology
on Human Resource Practices for the Modern Workforce, IGI
Global, 2022, pp. 1727–1742. doi: 10.4018/978-1-6684-
3873-2.ch087.

[10] G. Uddin, O. Alam, and A. Serebrenik, “A qualitative study
of developers’ discussions of their problems and joys during
the early COVID-19 months,” Empir. Softw. Eng., vol. 27,
no. 5, pp. 1–52, 2022.

[11] T. Besker, A. Martini, and J. Bosch, “Software developer
productivity loss due to technical debt—A replication and
extension study examining developers’ development work,”
J. Syst. Softw., vol. 156, pp. 41–61, 2019.

[12] M. Greiler, M.-A. Storey, and A. Noda, “An Actionable
Framework for Understanding and Improving Developer
Experience,” IEEE Trans. Softw. Eng., 2022.

[13] S. Laato, M. Mäntymäki, A. K. M. N. Islam, S. Hyrynsalmi,
and T. Birkstedt, “Trends and Trajectories in the Software
Industry: implications for the future of work,” Inf. Syst.
Front., vol. 25, no. 2, pp. 929–944, Apr. 2023, doi:
10.1007/s10796-022-10267-4.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3671

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[14] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann,
“Today Was a Good Day: The Daily Life of Software
Developers,” IEEE Trans. Softw. Eng., vol. 47, no. 5, pp.
863–880, May 2021, doi: 10.1109/TSE.2019.2904957.

[15] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B.
Houck, and J. Butler, “The SPACE of Developer
Productivity: There’s more to it than you think.,” Queue, vol.
19, no. 1, pp. 20–48, 2021.

[16] P. Kühtreiber, V. Pak, and D. Reinhardt, “A survey on
solutions to support developers in privacy-preserving IoT
development,” Pervasive Mob. Comput., vol. 85, p. 101656,
Sep. 2022, doi: 10.1016/j.pmcj.2022.101656.

[17] H. Assal and S. Chiasson, “‘Think secure from the
beginning’: A Survey with Software Developers,” in
Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, in CHI ’19. New York, NY, USA:
Association for Computing Machinery, May 2019, pp. 1–13.
doi: 10.1145/3290605.3300519.

[18] M. Q. Patton, Qualitative research & evaluation methods:
Integrating theory and practice. Sage publications, 2014.

[19] R. Ruslin, S. Mashuri, M. S. A. Rasak, F. Alhabsyi, and H.
Syam, “Semi-structured Interview: A Methodological
Reflection on the Development of a Qualitative Research
Instrument in Educational Studies,” IOSR J. Res. Method
Educ. IOSR-JRME, vol. 12, no. 1, Art. no. 1, 2022.

[20] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis,
“User acceptance of information technology: Toward a
unified view,” MIS Q., pp. 425–478, 2003.

[21] V. Venkatesh, J. Y. Thong, and X. Xu, “Consumer
acceptance and use of information technology: extending the
unified theory of acceptance and use of technology,” MIS Q.,
pp. 157–178, 2012.

[22] Ö. F. Ursavaş, “Unified Theory of Acceptance and Use of
Technology Model (UTAUT),” in Conducting Technology
Acceptance Research in Education : Theory, Models,
Implementation, and Analysis, Ö. F. Ursavaş, Ed., in Springer
Texts in Education. , Cham: Springer International
Publishing, 2022, pp. 111–133. doi: 10.1007/978-3-031-
10846-4_6.

[23] M. D. Williams, N. P. Rana, and Y. K. Dwivedi, “The unified
theory of acceptance and use of technology (UTAUT): a
literature review,” J. Enterp. Inf. Manag., vol. 28, no. 3, pp.
443–488, Jan. 2015, doi: 10.1108/JEIM-09-2014-0088.

[24] B. Kutsyuruba and S. McWatters, “Hermeneutics,” in
Varieties of Qualitative Research Methods: Selected
Contextual Perspectives, J. M. Okoko, S. Tunison, and K. D.
Walker, Eds., in Springer Texts in Education. , Cham:
Springer International Publishing, 2023, pp. 217–223. doi:
10.1007/978-3-031-04394-9_35.

http://www.ijritcc.org/

